elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Fusing Earth observation and socioeconomic data to increase the transferability of large-scale urban land use classification

Job, Rosier und Taubenböck, Hannes und Verburg, Peter und van Vliet, Jasper (2022) Fusing Earth observation and socioeconomic data to increase the transferability of large-scale urban land use classification. Remote Sensing of Environment, 278, e113076. Elsevier. doi: 10.1016/j.rse.2022.113076. ISSN 0034-4257.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
12MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0034425722001900

Kurzfassung

Monitoring and understanding urban development requires up-to-date information on multiple urban land-use classes. Manual classification and deep learning approaches based on very-high resolution imagery have been applied successfully, but the required resources limits their capacity to map urban land use at larger scales. Here, we use a combination of open-source satellite imagery, constituting of data from Sentinel-1 and Sentinel-2, and socioeconomic data, constituting of points-of-interest and spatial metrics from road networks to classify urban land-use at a national scale, using a deep learning approach. A related challenge for large-scale mapping is the availability of ground truth data. Therefore, we focus our analysis on the transferability of our classification approach, using ground truth labels from a nationwide land-use dataset for the Netherlands. By dividing the country into four regions, we tested whether a combination of satellite data and socioeconomic data increases the transferability of the classification approach, compared to using satellite data only. The results indicate that socioeconomic data increases the overall accuracy of the classification for the Netherlands by 3 percentage points. In a transfer learning approach we find that adding socioeconomic data increases the accuracy between 3 and 5 percentage points when trained on three regions and tested on the independent fourth one. In the case of training and testing on one region and testing on another, the increase in overall accuracy increased up to 9 percentage points. In addition, we find that our deep learning approach consistently outperforms a random forest model, used here as benchmark, in all of the abovementioned experiments. Overall, we find that socioeconomic data increases the accuracy of urban land use classification, but variations between experiments are large.

elib-URL des Eintrags:https://elib.dlr.de/187882/
Dokumentart:Zeitschriftenbeitrag
Titel:Fusing Earth observation and socioeconomic data to increase the transferability of large-scale urban land use classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Job, RosierInstitute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam, the NetherlandsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taubenböck, Hanneshannes.taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Verburg, PeterInstitute for Environmental Studies, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam, the NetherlandsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
van Vliet, JasperVU University AmsterdamNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2022
Erschienen in:Remote Sensing of Environment
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:278
DOI:10.1016/j.rse.2022.113076
Seitenbereich:e113076
Verlag:Elsevier
ISSN:0034-4257
Status:veröffentlicht
Stichwörter:Deep learning Model transferability Sentinel SAR Point-of-interest Road networks Remote sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Taubenböck, Prof. Dr. Hannes
Hinterlegt am:22 Sep 2022 09:37
Letzte Änderung:22 Sep 2022 09:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.