Braun, Moritz und Kellner, Leon und Schreiber, Sarah und Ehlers, Sören (2022) Prediction of fatigue failure in small-scale butt-welded joints with explainable machine learning. Procedia Structural Integrity, 38, Seiten 182-191. Elsevier. doi: 10.1016/j.prostr.2022.03.019. ISSN 2452-3216.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2452321622002323?via%3Dihub#!
Kurzfassung
Butt-welded joints are common in many industries. The fatigue behavior of such joints depends on numerous factors, e.g. load level, local weld geometry, or parent material strength. To make things worse, these factors often interact, yet mutual influence can hardly be quantified by multivariate studies, i.e. varying one factor at a time out of many factors, due to the large number of required tests and the statistical nature of weld geometry. Consequently, fatigue assessment of such joints often deviates significantly between prediction and experimental result. Thus, alternative methods are desirable in order to take various influencing factors into account. To this end, machine learning techniques were used to predict failure locations and number of cycles to failure of fatigue tests performed on small-scale butt-welded joint specimens. In addition to accurate predictions, an understanding of importance and mutual influence of the factors is desired, e.g. a ranking of the most important factors; however, capturing the influence of several possibly interacting factors usually requires complex nonlinear machine learning models. We used gradient boosted trees. Since these are black box models, the SHapley Additive exPlanations (SHAP) framework was used to explain the predictions, i.e. identify influential features and their interactions. Lastly, the model explanations are linked back to domain knowledge.
elib-URL des Eintrags: | https://elib.dlr.de/187553/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Prediction of fatigue failure in small-scale butt-welded joints with explainable machine learning | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | Procedia Structural Integrity | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Band: | 38 | ||||||||||||||||||||
DOI: | 10.1016/j.prostr.2022.03.019 | ||||||||||||||||||||
Seitenbereich: | Seiten 182-191 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
Name der Reihe: | Elsevier | ||||||||||||||||||||
ISSN: | 2452-3216 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Fatigue life predictionWelded joints Fatigue strength Machine learning models explainable AIgradient boosted trees SHAP | ||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
HGF - Programmthema: | E - keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||
DLR - Forschungsgebiet: | E - keine Zuordnung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - keine Zuordnung | ||||||||||||||||||||
Standort: | Geesthacht | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme | ||||||||||||||||||||
Hinterlegt von: | Piazza, Hilke Charlotte | ||||||||||||||||||||
Hinterlegt am: | 17 Okt 2022 07:27 | ||||||||||||||||||||
Letzte Änderung: | 02 Dez 2022 09:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags