elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Prediction of fatigue failure in small-scale butt-welded joints with explainable machine learning

Braun, Moritz und Kellner, Leon und Schreiber, Sarah und Ehlers, Sören (2022) Prediction of fatigue failure in small-scale butt-welded joints with explainable machine learning. Procedia Structural Integrity, 38, Seiten 182-191. Elsevier. doi: 10.1016/j.prostr.2022.03.019. ISSN 2452-3216.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2452321622002323?via%3Dihub#!

Kurzfassung

Butt-welded joints are common in many industries. The fatigue behavior of such joints depends on numerous factors, e.g. load level, local weld geometry, or parent material strength. To make things worse, these factors often interact, yet mutual influence can hardly be quantified by multivariate studies, i.e. varying one factor at a time out of many factors, due to the large number of required tests and the statistical nature of weld geometry. Consequently, fatigue assessment of such joints often deviates significantly between prediction and experimental result. Thus, alternative methods are desirable in order to take various influencing factors into account. To this end, machine learning techniques were used to predict failure locations and number of cycles to failure of fatigue tests performed on small-scale butt-welded joint specimens. In addition to accurate predictions, an understanding of importance and mutual influence of the factors is desired, e.g. a ranking of the most important factors; however, capturing the influence of several possibly interacting factors usually requires complex nonlinear machine learning models. We used gradient boosted trees. Since these are black box models, the SHapley Additive exPlanations (SHAP) framework was used to explain the predictions, i.e. identify influential features and their interactions. Lastly, the model explanations are linked back to domain knowledge.

elib-URL des Eintrags:https://elib.dlr.de/187553/
Dokumentart:Zeitschriftenbeitrag
Titel:Prediction of fatigue failure in small-scale butt-welded joints with explainable machine learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Braun, MoritzHamburg University of Technology, Institute of Ship Structural Design and Analysishttps://orcid.org/0000-0001-9266-1698NICHT SPEZIFIZIERT
Kellner, LeonHamburg University of Technology Hamburg, Germanyhttps://orcid.org/0000-0001-9722-7508NICHT SPEZIFIZIERT
Schreiber, SarahHamburg University of Technology Hamburg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ehlers, Sörensoren.ehlers (at) dlr.dehttps://orcid.org/0000-0001-5698-9354NICHT SPEZIFIZIERT
Datum:2022
Erschienen in:Procedia Structural Integrity
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Band:38
DOI:10.1016/j.prostr.2022.03.019
Seitenbereich:Seiten 182-191
Verlag:Elsevier
Name der Reihe:Elsevier
ISSN:2452-3216
Status:veröffentlicht
Stichwörter:Fatigue life predictionWelded joints Fatigue strength Machine learning models explainable AIgradient boosted trees SHAP
HGF - Forschungsbereich:Energie
HGF - Programm:keine Zuordnung
HGF - Programmthema:E - keine Zuordnung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):E - keine Zuordnung
Standort: Geesthacht
Institute & Einrichtungen:Institut für Maritime Energiesysteme
Hinterlegt von: Piazza, Hilke Charlotte
Hinterlegt am:17 Okt 2022 07:27
Letzte Änderung:02 Dez 2022 09:26

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.