Braun, Moritz und Neuhäusler, Josef und Denk, Martin und Renken, Finn und Kellner, Leon und Schubnell, Jan und Jung, Matthias und Rother, Klemens und Ehlers, Sören (2022) Statistical Characterization of Stress Concentrations along Butt Joint Weld Seams Using Deep Neural Networks. Applied Sciences, 12, Seiten 1-17. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/app12126089. ISSN 2076-3417.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://www.mdpi.com/2076-3417/12/12/6089
Kurzfassung
In order to ensure high weld qualities and structural integrity of engineering structures, it is crucial to detect areas of high stress concentrations along weld seams. Traditional inspection methods rely on visual inspection and manual weld geometry measurements. Recent advances in the field of automated measurement techniques allow virtually unrestricted numbers of inspections by laser measurements of weld profiles; however, in order to compare weld qualities of different welding processes and manufacturers, a deeper understanding of statistical distributions of stress concentrations along weld seams is required. Hence, this study presents an approach to statistically characterize different types of butt joint weld seams. For this purpose, an artificial neural network is created from 945 finite element simulations to determine stress concentration factors at butt joints. Besides higher quality of predictions compared to empirical estimation functions, the new approach can directly be applied to all types welded structures, including arc- and laser-welded butt joints, and coupled with all types of 3D-measurement devices. Furthermore, sheet thickness ranging from 1 mm to 100 mm can be assessed.
elib-URL des Eintrags: | https://elib.dlr.de/187551/ |
---|---|
Dokumentart: | Zeitschriftenbeitrag |
Titel: | Statistical Characterization of Stress Concentrations along Butt Joint Weld Seams Using Deep Neural Networks |
Autoren: | |
Datum: | 15 Juni 2022 |
Erschienen in: | Applied Sciences |
Referierte Publikation: | Ja |
Open Access: | Ja |
Gold Open Access: | Ja |
In SCOPUS: | Ja |
In ISI Web of Science: | Ja |
Band: | 12 |
DOI: | 10.3390/app12126089 |
Seitenbereich: | Seiten 1-17 |
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) |
ISSN: | 2076-3417 |
Status: | veröffentlicht |
Stichwörter: | local weld toe geometry; weld classification; 3-D scans; non-destructive testing; statistical assessment; machine learning; fatigue strength; stress concentration factor; weld quality; artificial neural network |
HGF - Forschungsbereich: | Energie |
HGF - Programm: | keine Zuordnung |
HGF - Programmthema: | E - keine Zuordnung |
DLR - Schwerpunkt: | Energie |
DLR - Forschungsgebiet: | E - keine Zuordnung |
DLR - Teilgebiet (Projekt, Vorhaben): | E - keine Zuordnung |
Standort: | Geesthacht |
Institute & Einrichtungen: | Institut für Maritime Energiesysteme |
Hinterlegt von: | Piazza, Hilke Charlotte |
Hinterlegt am: | 17 Okt 2022 07:24 |
Letzte Änderung: | 02 Dez 2022 09:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags