elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Predicting compressive strength and behavior of ice and analyzing feature importance with explainable machine learning models

Kellner, Leon und Stender, Merten und von Bock und Polach, Franz und Ehlers, Sören (2022) Predicting compressive strength and behavior of ice and analyzing feature importance with explainable machine learning models. Ocean Engineering, 255. Elsevier. doi: 10.1016/j.oceaneng.2022.111396. ISSN 0029-8018.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0029801822007806?via%3Dihub

Kurzfassung

Building and using ice-related models is challenging due to the complexity of the material. A common issue, shared by both material models and (semi-)empirical approaches, is estimating unknown input parameters such as compressive strength. This is often done with additional empirical formulas which have drawbacks, e.g., they are based on a limited amount of data. Regarding material modeling, a strongly related problem is the prioritization of effects to include in the model. This is mostly done based on a subjective mix of knowledge, model purpose, and experimental studies limited to that purpose, which risks overlooking effects or interaction of effects, and limits transferability of material models to other scenarios. To tackle these issues, a hybrid approach of domain knowledge and explainable machine learning was used. A large ice test database was compiled to train machine learning models to predict compressive strength and behavior type. The machine learning models’ predictions were more accurate than existing empirical or analytical approaches and can thus be used as an alternative, though less straightforward, tool for such predictions. Further, the SHAP explainable AI method was applied to the predictions. Impact rankings of experimental parameters and interaction effects between parameters were analyzed and discussed in terms of ice mechanics. Top features were strain rate, triaxial stress state, temperature, and loading direction, but impact rankings were highly dependent on prediction target and type of ice. Few interaction effects were found. The approach adds objectivity to the prioritization of effects for material modeling and generated further insights into ice mechanics. It is also considered useful for other natural materials or generally when there is more data than knowledge.

elib-URL des Eintrags:https://elib.dlr.de/187547/
Dokumentart:Zeitschriftenbeitrag
Titel:Predicting compressive strength and behavior of ice and analyzing feature importance with explainable machine learning models
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kellner, LeonHamburg University of Technology Hamburg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Stender, MertenHamburg University of Technology Hamburg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
von Bock und Polach, FranzHamburg University of Technology Hamburg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ehlers, Sörensoren.ehlers (at) dlr.dehttps://orcid.org/0000-0001-5698-9354NICHT SPEZIFIZIERT
Datum:1 Juli 2022
Erschienen in:Ocean Engineering
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:255
DOI:10.1016/j.oceaneng.2022.111396
Verlag:Elsevier
ISSN:0029-8018
Status:veröffentlicht
Stichwörter:Ice mechanics Ice compressive strength Material modeling Ductile Brittle Machine learning Explainable AI
HGF - Forschungsbereich:Energie
HGF - Programm:keine Zuordnung
HGF - Programmthema:E - keine Zuordnung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):E - keine Zuordnung
Standort: Geesthacht
Institute & Einrichtungen:Institut für Maritime Energiesysteme
Hinterlegt von: Piazza, Hilke Charlotte
Hinterlegt am:17 Okt 2022 07:19
Letzte Änderung:02 Dez 2022 09:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.