Westhofen, Lukas und Neurohr, Christian und Butz, Martin und Scholtes, Maike und Schuldes, Michael (2022) Using Ontologies for the Formalization and Recognition of Criticality for Automated Driving. IEEE Open Journal of Intelligent Transportation Systems, 3, Seiten 509-538. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/OJITS.2022.3187247. ISSN 2687-7813.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://dx.doi.org/10.1109/OJITS.2022.3187247
Kurzfassung
Knowledge representation and reasoning has a long history of examining how knowledge can be formalized, interpreted, and semantically analyzed by machines. In the area of automated vehicles, recent advances suggest the ability to formalize and leverage relevant knowledge as a key enabler in handling the inherently open and complex context of the traffic world. This paper demonstrates ontologies to be a powerful tool for a) modeling and formalization of and b) reasoning about factors associated with criticality in the environment of automated vehicles. For this, we leverage the well-known 6-Layer Model to create a formal representation of the environmental context. Within this representation, an ontology models domain knowledge as logical axioms, enabling deduction on the presence of critical factors within traffic scenarios. For executing automated analyses, a joint description logic and rule reasoner is used in combination with an a-priori predicate augmentation. We elaborate on the modular approach, present a publicly available implementation, and exemplarily evaluate the method by means of a large-scale drone data set of urban traffic scenarios.
elib-URL des Eintrags: | https://elib.dlr.de/187496/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Using Ontologies for the Formalization and Recognition of Criticality for Automated Driving | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 29 Juni 2022 | ||||||||||||||||||||||||
Erschienen in: | IEEE Open Journal of Intelligent Transportation Systems | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 3 | ||||||||||||||||||||||||
DOI: | 10.1109/OJITS.2022.3187247 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 509-538 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 2687-7813 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Intelligent vehicles, Safety, Knowledge representation, Inference mechanisms | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität > Systems Theory and Design | ||||||||||||||||||||||||
Hinterlegt von: | Westhofen, M.Sc. Lukas | ||||||||||||||||||||||||
Hinterlegt am: | 09 Aug 2022 09:01 | ||||||||||||||||||||||||
Letzte Änderung: | 11 Mai 2023 10:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags