Grundt, Dominik und Jurj, Sorin Liviu und Hagemann, Willem und Kröger, Paul und Fränzle, Martin (2022) Verification of Sigmoidal Artificial Neural Networks using iSAT. In: 7th International Workshop on Symbolic-Numeric Methods for Reasoning about CPS and IoT, SNR 2021, 361, Seiten 45-60. Electronic Proceedings in Theoretical Computer Science. 7th International Workshop on Symbolic-Numeric Methods for Reasoning about CPS and IoT, 2021-08-23, Online. doi: 10.4204/EPTCS.361.6. ISSN 2075-2180.
PDF
477kB |
Offizielle URL: https://dx.doi.org/10.4204/EPTCS.361.6
Kurzfassung
This paper presents an approach for verifying the behaviour of nonlinear Artificial Neural Networks (ANNs) found in cyber-physical safety-critical systems. We implement a dedicated interval constraint propagator for the sigmoid function into the SMT solver iSAT and compare this approach with a compositional approach encoding the sigmoid function by basic arithmetic features available in iSAT and an approximating approach. Our experimental results show that the dedicated and the compositional approach clearly outperform the approximating approach. Throughout all our benchmarks, the dedicated approach showed an equal or better performance compared to the compositional approach.
elib-URL des Eintrags: | https://elib.dlr.de/187452/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Zusätzliche Informationen: | Das Paper wurde im Rahmen des Projektes KI Wissen (gefördert durch BMWK - grant agreement No. 19A20020M) und des Projektes ViVre (State of Lower Saxony within the framework “Zukunftslabor Mobilit) erarbeitet. SCOPUS Eintrag/Ranking sollte zeitnah erfolgen. | ||||||||||||||||||||||||
Titel: | Verification of Sigmoidal Artificial Neural Networks using iSAT | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 13 Juli 2022 | ||||||||||||||||||||||||
Erschienen in: | 7th International Workshop on Symbolic-Numeric Methods for Reasoning about CPS and IoT, SNR 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | 361 | ||||||||||||||||||||||||
DOI: | 10.4204/EPTCS.361.6 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 45-60 | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | Electronic Proceedings in Theoretical Computer Science | ||||||||||||||||||||||||
ISSN: | 2075-2180 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | AI Verification, nonlinear activation function | ||||||||||||||||||||||||
Veranstaltungstitel: | 7th International Workshop on Symbolic-Numeric Methods for Reasoning about CPS and IoT | ||||||||||||||||||||||||
Veranstaltungsort: | Online | ||||||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||||||
Veranstaltungsdatum: | 23 August 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität > Systems Theory and Design | ||||||||||||||||||||||||
Hinterlegt von: | Grundt, Dominik | ||||||||||||||||||||||||
Hinterlegt am: | 09 Aug 2022 08:49 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags