elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SAR-based probabilistic water segmentation with adapted Bayesian convolutional neural networks

Hertel, Victor und Wani, Omar und Schneibel, Anne und Wieland, Marc und Martinis, Sandro und Chow, Candace Wing-Yuen (2022) SAR-based probabilistic water segmentation with adapted Bayesian convolutional neural networks. ESA Living Planet Symposium 2022, 2022-05-23 - 2022-05-27, Bonn, Deutschland.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://express.converia.de/frontend/index.php?page_id=22746&additions_conferenceschedule_action=detail&additions_conferenceschedule_controller=paperList&pid=63976&hash=66365f3323b05386dca5287beb1f77ca23ab0d8f5eee1e2e7a6e9d518f21e433

Kurzfassung

The occurrence of hazard events, such as floods, has recognized ecological and socioeconomic consequences for affected communities. Geospatial resources, including satellite-based synthetic aperture radar (SAR) and optical data, have been instrumental in providing time-sensitive information about the extent and impact of these events to support emergency response and hazard management efforts. In effect, finite resources can be better optimized to support the needs of often extensively affected areas. However, the derivation of SAR-based flood information is not without its challenges and inaccurate flood detection can result in non-trivial consequences. Consequently, in addition to segmentation maps, the inclusion of quantified uncertainties as easily interpretable probabilities can further support risk-based decision-making. This pilot study presents the first results of two probabilistic convolutional neural networks (CNNs) adapted for SAR-based water segmentation with freely available Sentinel-1 Interferometric Wide (IW) swath Ground Range Detected (GRD) data. In particular, the performance of a variational inference-based Bayesian convolutional neural network (BCNN) is evaluated against that of a Monte Carlo Dropout Network (MCDN). MCDN has been more commonly applied as an approximation of Bayesian deep learning. Here we highlight the differences in the uncertainties identified in both models, based on the evaluation of an extended set of performance metrics to diagnose data and model behaviours and to evaluate ensemble outputs at tile- and scene-levels. Since the understanding of uncertainty and subsequent derivation of uncertainty information can vary across applications, we demonstrate how uncertainties derived from ensemble outputs can be integrated into maps as a form of actionable information. Furthermore, map products are designed to reflect survey responses shared by end users from regional and international organizations, especially those working in emergency services and as operations coordinators. The findings of this study highlight how the consideration of both segmentation accuracy and probabilistic performance can build confidence in products used to make informed decisions to support emergency response within flood situations.

elib-URL des Eintrags:https://elib.dlr.de/187383/
Dokumentart:Konferenzbeitrag (Poster)
Titel:SAR-based probabilistic water segmentation with adapted Bayesian convolutional neural networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hertel, VictorDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wani, OmarUniversity of California at BerkeleyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schneibel, AnneAnne.Schneibel (at) dlr.dehttps://orcid.org/0000-0003-4329-1023NICHT SPEZIFIZIERT
Wieland, MarcMarc.Wieland (at) dlr.dehttps://orcid.org/0000-0002-1155-723XNICHT SPEZIFIZIERT
Martinis, Sandrosandro.martinis (at) dlr.dehttps://orcid.org/0000-0002-6400-361XNICHT SPEZIFIZIERT
Chow, Candace Wing-YuenCandace.Chow (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2022
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Uncertainty, Bayesian convolutional neural networks, Monte Carlo Dropout Network
Veranstaltungstitel:ESA Living Planet Symposium 2022
Veranstaltungsort:Bonn, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 Mai 2022
Veranstaltungsende:27 Mai 2022
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Martinis, Sandro
Hinterlegt am:27 Jul 2022 09:22
Letzte Änderung:24 Apr 2024 20:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.