elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

ANALYZING FLEXURAL STRENGTH DATA OF ICE: HOW USEFUL IS EXPLAINABLE MACHINE LEARNING?

Buil, Patrik und Kellner, Leon und Ehlers, Sören und von Bock und Polach, Franz (2022) ANALYZING FLEXURAL STRENGTH DATA OF ICE: HOW USEFUL IS EXPLAINABLE MACHINE LEARNING? In: ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2022, 6, V006T07A012. OMAE2022, 2022-06-05 - 2022-06-10, Hamburg. doi: 10.1115/OMAE2022-79211. ISBN 978-079188595-6.

[img] PDF - Nur DLR-intern zugänglich
1MB

Offizielle URL: https://doi.org/10.1115/OMAE2022-87434

Kurzfassung

The climate crisis results in a rapid sea ice decline, making shipping routes accessible for longer durations throughout the year and therefore increasing maritime traffic. At the same time, ice-structure interaction is known to cause damage to ships and structures. In this context, the flexural strength is a key property of the ice. It is also an important factor in the process of the formation of ice ridges which then act as obstacles to marine transit. Due to the complexity of natural materials, whose properties are often determined by many influencing variables, the development of a suitable material model for ice remains a major challenge. Many experimental studies on flexural strength have been done whose results can be used to draw conclusions about the material properties. However, a major drawback is that these experiments differ significantly regarding, e.g., test method, ice conditions, measured variables and testing boundary conditions, which makes a comparison as well as the derivation of general laws for material properties of ice challenging. Moreover, most studies investigate univariate relationships whereas in reality the behavior of ice is influenced by numerous factors. In this paper an explainable machine learning approach to analyze data from various bending tests and to identify relevant features regarding the flexural strength of ice is presented. Using an approach similar to Kellner et al. [1,2], a database of flexural strength tests is established. The data is used to create machine learning models, whose predictions are interpreted with the explainable AI (XAI) method Shapley Additive exPlanaionts (SHAP). The goal is to show a new approach to investigate the flexural strength of ice and to get a better understanding of how suitable the use of XAI for this problem is

elib-URL des Eintrags:https://elib.dlr.de/187372/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:ANALYZING FLEXURAL STRENGTH DATA OF ICE: HOW USEFUL IS EXPLAINABLE MACHINE LEARNING?
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Buil, PatrikUniversity DuisburgEssen, Duisburg & Hamburg Ship Model Basin, Hamburg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kellner, LeonHamburg University of Technology Hamburg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ehlers, Sörensoren.ehlers (at) dlr.dehttps://orcid.org/0000-0001-5698-9354NICHT SPEZIFIZIERT
von Bock und Polach, FranzHamburg University of Technology & Universität Hamburg Hamburg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:5 Juni 2022
Erschienen in:ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2022
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
Band:6
DOI:10.1115/OMAE2022-79211
Seitenbereich:V006T07A012
ISBN:978-079188595-6
Status:veröffentlicht
Stichwörter:flexural strength, ice mechanics, material modeling, data analysis, machine learning, explainable AI
Veranstaltungstitel:OMAE2022
Veranstaltungsort:Hamburg
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:5 Juni 2022
Veranstaltungsende:10 Juni 2022
Veranstalter :American Society of Mechanical Engineers (ASME)
HGF - Forschungsbereich:Energie
HGF - Programm:keine Zuordnung
HGF - Programmthema:E - keine Zuordnung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):E - keine Zuordnung
Standort: Geesthacht
Institute & Einrichtungen:Institut für Maritime Energiesysteme
Hinterlegt von: Piazza, Hilke Charlotte
Hinterlegt am:02 Dez 2022 09:19
Letzte Änderung:24 Apr 2024 20:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.