elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Shadow-Aware Nonlinear Spectral Unmixing for Hyperspectral Imagery

Zhang, Guichen und Scheunders, Paul und Cerra, Daniele und Müller, Rupert (2022) Shadow-Aware Nonlinear Spectral Unmixing for Hyperspectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, Seiten 5514-5533. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2022.3188896. ISSN 1939-1404.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
5MB

Offizielle URL: https://ieeexplore.ieee.org/document/9815850

Kurzfassung

In hyperspectral imagery, differences in ground surface structures cause a large variation in the optical scattering in sunlit and (partly) shadowed pixels. The complexity of the scene demands a general spectral mixture model that can adapt to the different scenarios of the ground surface. In this paper, we propose a physics-based spectral mixture model, i.e., the extended shadow multilinear mixing (ESMLM) model that accounts for typical ground scenarios in the presence of shadows and nonlinear optical effects, by considering multiple illumination sources. Specifically, the diffuse solar illumination alters as the wavelength changes, requiring a wavelength-dependent modeling of shadows. Moreover, we allow different types of nonlinear interactions for different illumination conditions. The proposed model is described in a graph-based representation, which sums up all possible radiation paths initiated by the illumination sources. Physical assumptions are made to simplify the proposed model, resulting in material abundances and four physically interpretable parameters. Additionally, shadow-removed images can be reconstructed. The proposed model is compared with other state-of-the-art models using one synthetic dataset and two real datasets. Experimental results show that the ESMLM model performs robustly in various illumination conditions. In addition, the physically interpretable parameters contain valuable information on the scene structures and assist in performing shadow removal that outperforms other state-of-the-art works.

elib-URL des Eintrags:https://elib.dlr.de/187360/
Dokumentart:Zeitschriftenbeitrag
Titel:Shadow-Aware Nonlinear Spectral Unmixing for Hyperspectral Imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zhang, GuichenGuichen.Zhang (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Scheunders, Paulpaul.scheunders (at) uantwerpen.beNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cerra, DanieleDaniele.Cerra (at) dlr.dehttps://orcid.org/0000-0003-2984-8315NICHT SPEZIFIZIERT
Müller, RupertRupert.Mueller (at) dlr.dehttps://orcid.org/0000-0002-3288-5814NICHT SPEZIFIZIERT
Datum:2022
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:15
DOI:10.1109/JSTARS.2022.3188896
Seitenbereich:Seiten 5514-5533
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:nonlinear spectral unmixing, spectral mixing models, hyperspectral imagery, shadow-aware, nonlinear effect, HySpex
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Zhang, Guichen
Hinterlegt am:11 Jul 2022 13:08
Letzte Änderung:19 Okt 2023 14:23

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.