Bartz, Hannes und Jerkovits, Thomas und Rosenkilde, Johan (2022) Fast Kötter-Nielsen-Høholdt Interpolation Over Skew Polynomial Rings. In: 25th IFAC Symposium on Mathematical Theory of Networks and Systems, MTNS 2022. 25th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2022), 2022-09-12 - 2022-09-16, Bayreuth, Germany. doi: 10.1016/j.ifacol.2022.11.019. ISSN 2405-8963.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Skew polynomials are a class of non-commutative polynomials that have several applications in computer science, coding theory and cryptography. In particular, skew polynomials can be used to construct and decode evaluation codes in several metrics, like e.g. the Hamming, rank, sum-rank and skew metric. We propose a fast divide-and-conquer variant of the Kötter–Nielsen–Høholdt (KNH) interpolation algorithm: it inputs a list of linear functionals on skew polynomial vectors, and outputs a reduced Gröbner basis of their kernel intersection. This can be used to solve the interpolation step of interpolation-based decoding of (interleaved) Gabidulin, linearized Reed—Solomon and skew Reed—Solomon codes efficiently, which have various applications in coding theory and code-based quantum-resistant cryptography.
elib-URL des Eintrags: | https://elib.dlr.de/187144/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Fast Kötter-Nielsen-Høholdt Interpolation Over Skew Polynomial Rings | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Erschienen in: | 25th IFAC Symposium on Mathematical Theory of Networks and Systems, MTNS 2022 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1016/j.ifacol.2022.11.019 | ||||||||||||||||
ISSN: | 2405-8963 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Kötter interpolation, skew polynomial rings, divide-and-conquer | ||||||||||||||||
Veranstaltungstitel: | 25th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2022) | ||||||||||||||||
Veranstaltungsort: | Bayreuth, Germany | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 12 September 2022 | ||||||||||||||||
Veranstaltungsende: | 16 September 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Cybersicherheit für autonome und vernetzte Systeme [KNQ] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Satellitennetze | ||||||||||||||||
Hinterlegt von: | Bartz, Hannes | ||||||||||||||||
Hinterlegt am: | 04 Jul 2022 18:46 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags