Rubio, Ma und Garcia Sanchez, Daniel und Gazdzicki, Pawel und Friedrich, K. Andreas und Urquia, A (2022) Failure mode diagnosis in proton exchange membrane fuel cells using local electrochemical noise. Journal of Power Sources, 541, Seite 23158. Elsevier. doi: 10.1016/j.jpowsour.2022.231582. ISSN 0378-7753.
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: http://www.elsevier.com/locate/jpowsour
Kurzfassung
Early diagnosis of fuel cell failure modes is a very active research topic, as it improves robustness and durability of fuel cells used in commercial applications. The diagnosis method should be suited for being applied in real time, without interfering with the fuel cell operation, and it should be implemented using inexpensive hardware and light equipment. A novel method of failure diagnosis in PEM fuel cells, based on the analysis of local electrochemical noise, is proposed. Seven electrochemical noise signals are acquired in different parts of the cell, significantly increasing the information for an effective diagnosis, since previous studies have only analyzed a single signal from the electrochemical noise in the cell. Each electrochemical noise signal is frequency decomposed using wavelet transform to create a characteristic pattern. These patterns are used in a deep learning neural network to perform the cell state classification. The proposed method has been successfully applied to the classification of 26 different states achieved in experiments where the following factors have been varied: (1) average current density; (2) airflow; (3) drying; and (4) air pressure. The mean successful identification rate of the 26 states is above 85%. The proposed diagnosis method is well-suited for real-time diagnosis, and it can be implemented using lightweight and inexpensive hardware
elib-URL des Eintrags: | https://elib.dlr.de/186819/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Failure mode diagnosis in proton exchange membrane fuel cells using local electrochemical noise | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Mai 2022 | ||||||||||||||||||||||||
Erschienen in: | Journal of Power Sources | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 541 | ||||||||||||||||||||||||
DOI: | 10.1016/j.jpowsour.2022.231582 | ||||||||||||||||||||||||
Seitenbereich: | Seite 23158 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0378-7753 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | PEM fuel cell Local diagnosis Electrochemical noise Wavelet transform Neural networks | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||
HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SP - Energiespeicher | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Thermochemische Prozesse | ||||||||||||||||||||||||
Standort: | Stuttgart | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Technische Thermodynamik > Elektrochemische Energietechnik | ||||||||||||||||||||||||
Hinterlegt von: | Garcia Sanchez, Dr Daniel | ||||||||||||||||||||||||
Hinterlegt am: | 22 Jul 2022 15:07 | ||||||||||||||||||||||||
Letzte Änderung: | 27 Jun 2023 08:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags