elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SyntEO: Synthetic dataset generation for Earth observation and deep learning - Demonstrated for offshore wind farm detection

Hoeser, Thorsten und Kuenzer, Claudia (2022) SyntEO: Synthetic dataset generation for Earth observation and deep learning - Demonstrated for offshore wind farm detection. ISPRS Journal of Photogrammetry and Remote Sensing, 189, Seiten 163-184. Elsevier. doi: 10.1016/j.isprsjprs.2022.04.029. ISSN 0924-2716.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
22MB

Offizielle URL: https://dx.doi.org/10.1016/j.isprsjprs.2022.04.029

Kurzfassung

With the emergence of deep learning in the last years, new opportunities arose in Earth observation research. Nevertheless, they also brought with them new challenges. The data-hungry training processes of deep learning models demand large, resource expensive, annotated datasets and partly replaced knowledge-driven approaches so that model behaviour and the final prediction process became a black box. The proposed SyntEO approach enables Earth observation researchers to automatically generate large deep learning ready datasets by merging existing and procedural data. SyntEO does this by including expert knowledge in the data generation process in a highly structured manner to control the automatic image and label generation by employing an ontology. In this way, fully controllable experiment environments are set up, which support insights in the model training on the synthetic datasets. Thus, SyntEO makes the learning process approachable, which is an important cornerstone for explainable machine learning. We demonstrate the SyntEO approach by predicting offshore wind farms in Sentinel-1 images on two of the worlds largest offshore wind energy production sites. The largest generated dataset has 90,000 training examples. A basic convolutional neural network for object detection, that is only trained on this synthetic data, confidently detects offshore wind farms by minimising false detections in challenging environments. In addition, four sequential datasets are generated, demonstrating how the SyntEO approach can precisely define the dataset structure and influence the training process. SyntEO is thus a hybrid approach that creates an interface between expert knowledge and data-driven image analysis.

elib-URL des Eintrags:https://elib.dlr.de/186736/
Dokumentart:Zeitschriftenbeitrag
Titel:SyntEO: Synthetic dataset generation for Earth observation and deep learning - Demonstrated for offshore wind farm detection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hoeser, Thorstenthorsten.hoeser (at) dlr.dehttps://orcid.org/0000-0002-7179-3664NICHT SPEZIFIZIERT
Kuenzer, Claudiaclaudia.kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:17 Mai 2022
Erschienen in:ISPRS Journal of Photogrammetry and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:189
DOI:10.1016/j.isprsjprs.2022.04.029
Seitenbereich:Seiten 163-184
Verlag:Elsevier
ISSN:0924-2716
Status:veröffentlicht
Stichwörter:SyntEO Synthetic training data Explainable machine learning Deep learning CNN Offshore wind farm
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren, R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum
Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Höser, Thorsten
Hinterlegt am:08 Jun 2022 10:12
Letzte Änderung:23 Jun 2022 08:25

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.