elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Tracking progress towards the green energy transition: Nationwide mapping of roof-top photovoltaic installations

Leutner, Benjamin und Starmans, Sina und Metz-Marconcini, Annekatrin und Esch, Thomas (2022) Tracking progress towards the green energy transition: Nationwide mapping of roof-top photovoltaic installations. ESA Living Planet Symposium, 2022-05-23 - 2022-05-27, Bonn.

[img] PDF
1MB

Kurzfassung

The decarbonization of the global energy system through the transition to renewable energy sources is one of the main pillars of mitigation measures addressing climate change. A key determinant in the realization of a successful energy transition is the rapid installation of renewable energy infrastructure, which, for the most part, is of very heterogenous nature and spatially decentralized [1]. This is particularly true for roof-top photovoltaic systems (PVs), which are often small-scale, privately owned, differ widely in their capacity and are non-randomly distributed in space, with even the occasional emergence of patterns of socio-economic and political boundary conditions. In order to foster the rapid expansion of PV installations, which is needed for reaching aims and commitments with respect to the energy transition, an automatically updatable monitoring of the evolution of such PV installations over time can be a vital asset for political decision makers, both on the communal and national level, supporting the efficient allocation of resources. Here, we demonstrate a system for nationwide mapping of rooftop PV installations based on multiple timesteps of aerial imagery for all of Germany. We demonstrate our system with an exemplary wall-to-wall analysis, where we exploited publicly available registry data as well as manually labelled samples for training data collection. Based on this curated training data set of around 350.000 samples, we trained ensembles of supervised, state-of-the-art deep neural networks (ResNets, ResNests, EfficientNets, ConvNexts and VisionTransformers) for predicting the presence of PV installations for each building in Germany. Following a rigorous validation exercise based on over 20.000 samples, we report a very high predictive performance of 0.96% F1-score overall, with a regional variability of +/- 0.03. Going beyond single date classifications, this system enables us to track the growth of PV installations over time throughout Germany. Add-on analyses of installed PVs in combination with spatially explicit solar potential models [2] allow us now to identify and suggest priority areas for high-return-on-investment policy stimulation for fostering the much-needed growth of decentralized PV installations. References: [1] M. Victoria, K. Zhu, T. Brown, G. B. Andresen, and M. Greiner, 'Early decarbonisation of the european energy system pays off' Nature Communications, vol. 11, no. 1, 2020. [2] S. Joshi, S. Mittal, P. Holloway, P. R. Shukla, B. Ó. Gallachóir, and J. Glynn, 'High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential for renewable electricity generation' Nature Communications, vol. 12, no. 1, 2021.

elib-URL des Eintrags:https://elib.dlr.de/186665/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Tracking progress towards the green energy transition: Nationwide mapping of roof-top photovoltaic installations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Leutner, BenjaminBenjamin.Leutner (at) dlr.dehttps://orcid.org/0000-0002-6893-2002NICHT SPEZIFIZIERT
Starmans, SinaSina.Starmans (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Metz-Marconcini, AnnekatrinAnnekatrin.Metz-Marconcini (at) dlr.dehttps://orcid.org/0009-0002-3896-4705NICHT SPEZIFIZIERT
Esch, ThomasThomas.Esch (at) dlr.dehttps://orcid.org/0000-0002-5868-9045NICHT SPEZIFIZIERT
Datum:2022
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seite 1
Status:veröffentlicht
Stichwörter:deep learning, artificial intelligence, energy, solar power, green deal
Veranstaltungstitel:ESA Living Planet Symposium
Veranstaltungsort:Bonn
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 Mai 2022
Veranstaltungsende:27 Mai 2022
Veranstalter :European Space Agency
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Leutner, Dr. Benjamin
Hinterlegt am:27 Jun 2022 09:31
Letzte Änderung:24 Apr 2024 20:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.