elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Nutzung der HoloLens 2 für die Pflanzenerkennung und Augmentierung im Kontext des EDEN ISS Weltraumgewächshauses

Klug, Matthias (2022) Nutzung der HoloLens 2 für die Pflanzenerkennung und Augmentierung im Kontext des EDEN ISS Weltraumgewächshauses. Masterarbeit, Universität Bremen.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The aim of the following master thesis was to examine if the HoloLens 2 is able to perform plant object detection, which could be used to support the operating procedures of future astronauts inside space greenhouses with the goal to reduce crew time and workload. Review of related work in the field of machine learning and agricultural object detection indicated that the object detection framework YOLOv5 was suitable for such a usecase. Therefore a dataset containing images of wild arugula plants from the EDEN ISS analogue space greenhouse was compiled in order to train the YOLOv5 object detection model. During training different data augmentation methods where used to gradually improve the performance of the model. Subsequently a Unity application for the HoloLens 2 was developed to deploy the object detection model onto the HoloLens 2 and visualize the detection results with interactive 3D labels. The results of a performance test showed that the HoloLens 2 was not capable of performing a object detection on images with a resolution of 1920x1080 for a realtime application. Only when the resolution was reduced to 320x192 the application running on the HoloLens 2 could be described as usable. Furthermore a perspective test was conducted where the detection ability of the arugula model was compared to a pretrained YOLOv5 model in a real world environment using the HoloLens 2. The test consisted of recognizing a wild arugula plant with the arugula model from different heights and distances and doing the same with a similar sized object as the arugula for the pre-trained model. The results of this test indicated that the dataset which the arugula model was trained on was insufficient because the model had a worse detection range compared to the pre-trained model. The results of the performance test are limited by the fact that no real user evaluated the application for determining to what extend it is usable. Also the results of the perspective test are limited because it hadn’t been conducted inside the analogue space greenhouse which the training data was recorded in. Overall the application works as intended by detecting plants and annotating them accordingly. Because of the limitations a user study inside a greenhouse is necessary to determine how the model performs on the HoloLens 2 and how usable the application is in its current state. Finally the application needs to be tested and optimized further regarding the performance and detection range in order to provide a benefit for users in a real world environment.

elib-URL des Eintrags:https://elib.dlr.de/186664/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Nutzung der HoloLens 2 für die Pflanzenerkennung und Augmentierung im Kontext des EDEN ISS Weltraumgewächshauses
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Klug, MatthiasNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2022
Referierte Publikation:Nein
Open Access:Nein
Status:veröffentlicht
Stichwörter:Augmented Reality, Machine Learning, Plant Detection, Object Detection, EDEN ISS, AR, Greenhouses
Institution:Universität Bremen
Abteilung:Fachbereich 03 – Mathematik/Informatik
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - EDEN ISS Follow-on
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Systemanalyse Raumsegment
Hinterlegt von: Zeidler, Conrad
Hinterlegt am:02 Jun 2022 12:41
Letzte Änderung:02 Jun 2022 12:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.