elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Urban Sprawl and COVID-19 Impact Analysis by Integrating Deep Learning with Google Earth Engine

Zarro, Chiara und Cerra, Daniele und Auer, Stefan und Ullo, Silvia Liberata und Reinartz, Peter (2022) Urban Sprawl and COVID-19 Impact Analysis by Integrating Deep Learning with Google Earth Engine. Remote Sensing, 14 (9), Seite 2038. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14092038. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
11MB

Offizielle URL: http://dx.doi.org/10.3390/rs14092038

Kurzfassung

Timely information on land use, vegetation coverage, and air and water quality, are crucial for monitoring and managing territories, especially for areas in which there is dynamic urban expansion. However, getting accessible, accurate, and reliable information is not an easy task, since the significant increase in remote sensing data volume poses challenges for the timely processing and analysis of the resulting massive data volume. From this perspective, classical methods for urban monitoring present some limitations and more innovative technologies, such as artificial-intelligence-based algorithms, must be exploited, together with performing cloud platforms and ad hoc pre-processing steps. To this end, this paper presents an approach to the use of cloud-enabled deep-learning technology for urban sprawl detection and monitoring, through the fusion of optical and synthetic aperture radar data, by integrating the Google Earth Engine cloud platform with deep-learning techniques through the use of the open-source TensorFlow library. The model, based on a U-Net architecture, was applied to evaluate urban changes in Phoenix, the second fastest-growing metropolitan area in the United States. The available ancillary information on newly built areas showed good agreement with the produced change detection maps. Moreover, the results were temporally related to the appearance of the SARS-CoV-2 (commonly known as COVID-19) pandemic, showing a decrease in urban expansion during the event. The proposed solution may be employed for the efficient management of dynamic urban areas, providing a decision support system to help policy makers in the measurement of changes in territories and to monitor their impact on phenomena related to urbanization growth and density. The reference data were manually derived by the authors over an area of approximately 216 km2, referring to 2019, based on the visual interpretation of high resolution images, and are openly available.

elib-URL des Eintrags:https://elib.dlr.de/186277/
Dokumentart:Zeitschriftenbeitrag
Titel:Urban Sprawl and COVID-19 Impact Analysis by Integrating Deep Learning with Google Earth Engine
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zarro, ChiaraUniversity of BeneventoNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cerra, Danieledaniele.cerra (at) dlr.dehttps://orcid.org/0000-0003-2984-8315NICHT SPEZIFIZIERT
Auer, StefanStefan.Auer (at) dlr.dehttps://orcid.org/0000-0001-9310-2337NICHT SPEZIFIZIERT
Ullo, Silvia LiberataUniversity of BeneventoNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:April 2022
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.3390/rs14092038
Seitenbereich:Seite 2038
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:urban sprawl; data fusion; Sentinel-2; Copernicus; synthetic aperture radar; deep learning; Google Earth Engine; TensorFlow; COVID-19
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Cerra, Daniele
Hinterlegt am:09 Mai 2022 10:52
Letzte Änderung:24 Jan 2023 12:36

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.