elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Discretization in Generalized Function Spaces

Fischer, Jens und Stens, Rudolf (2022) Discretization in Generalized Function Spaces. In: FAATNA 2022, Book of Abstracts, Seiten 170-171. University of Basilicata, Italy. Functional Analysis, Approximation Theory and Numerical Analysis (FAATNA), 2022-07-05 - 2022-07-08, Matera, Italy.

[img] PDF
146kB

Offizielle URL: http://web.unibas.it/faatna22/program.html

Kurzfassung

The operation ''discretization'' usually means that functions are mapped to sequences of real or complex numbers. These sequences can moreover be finite or infinite. It is clear, ''discretization'' cannot be applied to all kinds of functions and it stands outside of two different kinds of spaces, function spaces and sequence spaces. Furthermore, four different Fourier transforms are involved, the integral Fourier transform for integrable (non-periodic) functions and the finite Fourier transform for periodic (locally integrable) functions, on one hand, and the Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT) for infinite and finite sequences, on the other hand [1]. However, ''discretization'' can be treated in Schwartz' generalized function spaces [2], such as the space of tempered distributions, where it is an operation that maps tempered distributions onto tempered distributions and its Fourier transform is the Fourier transform on tempered distributions. Recently it has been shown that this Fourier transform reduces to the four, usually defined Fourier transforms [3]. The setting of tempered distributions moreover allows to show that discretization and periodization are Fourier transforms of one another and their inverses, regularization and localization, form another Fourier transform pair [4]. A generalization of this concept is to understand discretization, periodization, regularization and localization as a family of four operations whose members are related to one another by three kinds of reciprocity, (i) reciprocity with respect to multiplication, (ii) reciprocity between multiplication and convolution and (iii) reciprocity with respect to convolution. Another important family is integration, differentiation, Fourier-domain integration and Fourier-domain differentiation. The former is Woodward's operational calculus [5, 6] and the latter is Heaviside's operational calculus [7]. Both are intensively used today in electrical engineering.

elib-URL des Eintrags:https://elib.dlr.de/186225/
Dokumentart:Konferenzbeitrag (Vortrag)
Zusätzliche Informationen:This contribution is published in the proceedings of FAATNA as https://drna.padovauniversitypress.it/2023/3/5.
Titel:Discretization in Generalized Function Spaces
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fischer, JensJens.Fischer (at) dlr.dehttps://orcid.org/0000-0002-8987-0859NICHT SPEZIFIZIERT
Stens, RudolfRWTH Aachen UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juli 2022
Erschienen in:FAATNA 2022, Book of Abstracts
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 170-171
Verlag:University of Basilicata, Italy
Status:veröffentlicht
Stichwörter:discretization, periodization, regularization, localization, tempered distributions, generalized function spaces, Schwartz distributions, distribution theory, Fourier transform, finite Fourier transform, DTFT, DFT, operational calculus, Heaviside's calculus, Woodward's calculus
Veranstaltungstitel:Functional Analysis, Approximation Theory and Numerical Analysis (FAATNA)
Veranstaltungsort:Matera, Italy
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:5 Juli 2022
Veranstaltungsende:8 Juli 2022
Veranstalter :University of Basilicata
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Flugzeug-SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie
Hinterlegt von: Keller, Martin
Hinterlegt am:26 Apr 2022 13:27
Letzte Änderung:24 Apr 2024 20:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.