Meddeb, Hosni und Götz-Köhler, Maximilian und Osterthun, Norbert und Sergeev, Oleg und Gehrke, Kai und Vehse, Martin und Agert, Carsten (2022) Investigation of quantum size effects on the optical absorption in ultrathin single quantum well solar cell embedded as a nanophotonic resonator. IEEE Journal of Photovoltaics, 12 (3), Seiten 760-770. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JPHOTOV.2022.3150726. ISSN 2156-3381.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9729107
Kurzfassung
Subwavelength optical nanocavity using semiconductor nanostructures is a key nanophotonic approach for various optoelectronic devices. In such low-dimensional systems, size-dependent changes can arise due to quantum confinement (QC). In this article, the implications of quantum-size effects on the light harvesting in ultrathin single quantum well solar cell (SQWSC) are analyzed. This device is based on silicon (barrier)/germanium (QW) nanostructures integrated as a deep-subwavelength nanophotonic resonator. Compared with the state-of-the-art, the novelty of this article consists of the investigation of the synergy between photonic and electronic confinements at both functional materials and device levels. It is shown that QC effects enhance the optical absorption efficiency in both low-dimensional germanium single layers and QW structures. However, this is affected by the barrier heights and the interface states. In the SQWSC devices, the changes of the photocurrent output, the resonance condition and the absorption edge as a function of QW thickness are explained based on the optical field and the local absorption distributions. Shorter nanocavity lengths with thinner QW nanoabsorbers result in blue-shifted resonance wavelength, suitable maximum optical field intensity in the visible wavelengths range as well as promoted photonic confinement. This enables an enhancement of the optical absorption efficiency relative to thick counterparts. The nonlinearity in the thickness-related photocurrent implies a drastic reduction in QW thickness while preserving a high photocurrent level. The presented considerations in SQWC could be extended as design rules for the optimization of the photocurrent in derived multiple quantum well systems and for relevant color-neutral semitransparent devices.
elib-URL des Eintrags: | https://elib.dlr.de/186190/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Investigation of quantum size effects on the optical absorption in ultrathin single quantum well solar cell embedded as a nanophotonic resonator | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 4 März 2022 | ||||||||||||||||||||||||||||||||
Erschienen in: | IEEE Journal of Photovoltaics | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 12 | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/JPHOTOV.2022.3150726 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 760-770 | ||||||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
ISSN: | 2156-3381 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Absorbing nanophotonic resonator; quantum confinement; quantum well; semiconductor nanostructures; subwavelength optical nanocavity; ultrathin solar cell | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Stadt- und Gebäudetechnologien | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Meddeb Dite Hasanet, Hosni | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 25 Apr 2022 11:47 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 25 Apr 2022 11:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags