elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Stability and Control Analysis for an Unmanned Aircraft Configuration Using System-Identification Techniques

Rohlf, Detlef und Schmidt, Stefan und Irving, Jonathan (2012) Stability and Control Analysis for an Unmanned Aircraft Configuration Using System-Identification Techniques. Journal of Aircraft, 49 (6), Seiten 1597-1609. American Institute of Aeronautics and Astronautics (AIAA). doi: 10.2514/1.C031392. ISSN 0021-8669.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://arc.aiaa.org/doi/10.2514/1.C031392

Kurzfassung

Different methods are described to determine dynamic derivatives of an unmanned combat air vehicle configuration called SACCON (for “stability and control configuration”). These methods can be applied to both experimental and computationally obtained data sets. The first method assumes a linear derivative model and is based on a least-squares curve-fitting technique and a subsequent evaluation step to actually compute the derivatives themselves. Based on the unsteady simulation obtained by computational fluid dynamics, the routine is able to recover the major trends of vehicle performance with reasonable agreement for pitching stiffness and damping. Lift-related quantities do show a discrepancy, particularly at high angle of attack. The second approach also assumes a linear derivative model. In this case, however, the static pitching stiffness terms are defined explicitly from the static test results and then subtracted from the dynamic results to give the residual effect of the damping terms. A least-squares fit of these is used to determine the damping derivatives. Using this approach, it is demonstrated that the linear-derivative assumption falls down at higher angle of attack, and a more generalized modeling paradigm is required. The final approach enables the use of nonlinear model equations and is therefore applicable to the entire tested angle-of-attack and angle-of-sideslip regime, generating a single set of nonlinear derivatives. Thus, the hysteresis loops of the coefficients derived from dynamic wind-tunnel tests can be reproduced satisfactorily with most of their inherent significant changes depending on angle of attack and forced oscillation frequency.

elib-URL des Eintrags:https://elib.dlr.de/186100/
Dokumentart:Zeitschriftenbeitrag
Titel:Stability and Control Analysis for an Unmanned Aircraft Configuration Using System-Identification Techniques
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rohlf, DetlefDLR, Institute of Flight Systems, Braunschweig, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schmidt, StefanDSTO, AVD, Flight Systems, AUSTRALIANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Irving, JonathanBAE-Systems, Military Air Solutions, Flight Dynamics R&T, UKNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2012
Erschienen in:Journal of Aircraft
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:49
DOI:10.2514/1.C031392
Seitenbereich:Seiten 1597-1609
Verlag:American Institute of Aeronautics and Astronautics (AIAA)
ISSN:0021-8669
Status:veröffentlicht
Stichwörter:Results achieved within the RTO AVT-161 Task Group, improve the ability to accurately predict both static and dynamic stability of general air and sea vehicles using computational fluid dynamics (CFD).
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):L - keine Zuordnung
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugsystemtechnik
Hinterlegt von: Mönnich, Wulf
Hinterlegt am:12 Apr 2022 14:34
Letzte Änderung:12 Apr 2022 14:34

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.