Wartha, Niklas Louis und Stephan, Anton und Holzäpfel, Frank und Rotshteyn, Grigory (2022) Characterizing aircraft wake vortex position and strength using LiDAR measurements processed with artificial neural networks. Optics Express, 30 (8), Seiten 13197-13225. Optical Society of America. doi: 10.1364/OE.454525. ISSN 1094-4087.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
11MB |
Offizielle URL: https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-8-13197&id=471171
Kurzfassung
The position and strength of wake vortices captured by LiDAR (Light Detection and Ranging) instruments are usually determined by conventional approaches such as the Radial Velocity (RV) method. Promising wake vortex detection results of LiDAR measurements using machine learning and operational drawbacks of the comparatively slow traditional processing methods motivate exploring the suitability of Artificial Neural Networks (ANNs) for quantitatively estimating the position and strength of aircraft wake vortices. The ANNs are trained by a unique data set of wake vortices generated by aircraft during final approach, which are labeled using the RV method. First comparisons reveal the potential of custom Convolutional Neural Networks in comparison to readily available resources as well as traditional LiDAR processing algorithms.
elib-URL des Eintrags: | https://elib.dlr.de/186049/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Characterizing aircraft wake vortex position and strength using LiDAR measurements processed with artificial neural networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 5 April 2022 | ||||||||||||||||||||
Erschienen in: | Optics Express | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 30 | ||||||||||||||||||||
DOI: | 10.1364/OE.454525 | ||||||||||||||||||||
Seitenbereich: | Seiten 13197-13225 | ||||||||||||||||||||
Verlag: | Optical Society of America | ||||||||||||||||||||
ISSN: | 1094-4087 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Wake Vortex, LiDAR, Machine Learning, Artificial Neural Networks | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Luftverkehr und Auswirkungen | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L AI - Luftverkehr und Auswirkungen | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Klima, Wetter und Umwelt | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Verkehrsmeteorologie | ||||||||||||||||||||
Hinterlegt von: | Wartha, Niklas Louis | ||||||||||||||||||||
Hinterlegt am: | 06 Apr 2022 14:22 | ||||||||||||||||||||
Letzte Änderung: | 06 Apr 2022 14:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags