Carrillo-Perez, Borja und Barnes, Sarah und Stephan, Maurice (2022) Ship segmentation and georeferencing from static oblique view images. Sensors, 22 (7). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s22072713. ISSN 1424-8220.
PDF
- Verlagsversion (veröffentlichte Fassung)
8MB |
Offizielle URL: https://www.mdpi.com/1424-8220/22/7/2713
Kurzfassung
Camera systems support the rapid assessment of ship traffic at ports, allowing for a better perspective of the maritime situation. However, optimal ship monitoring requires a level of automation that allows personnel to keep track of relevant variables in the maritime situation in an understandable and visualisable format. It therefore becomes important to have real-time recognition of ships present at the infrastructure, with their class and geographic position presented to the maritime situational awareness operator. This work presents a novel dataset, ShipSG, for the segmentation and georeferencing of ships in maritime monitoring scenes with a static oblique view. Moreover, an exploration of four instance segmentation methods, with a focus on robust (Mask-RCNN, DetectoRS) and real-time performances (YOLACT, Centermask-Lite) and their generalisation to other existing maritime datasets, is shown. Lastly, a method for georeferencing ship masks is proposed. This includes an automatic calculation of the pixel of the segmented ship to be georeferenced and the use of a homography to transform this pixel to geographic coordinates. DetectoRS provided the highest ship segmentation mAP of 0.747. The fastest segmentation method was Centermask-Lite, with 40.96 FPS. The accuracy of our georeferencing method was (22±10) m for ships detected within a 400 m range, and (53±24) m for ships over 400 m away from the camera.
elib-URL des Eintrags: | https://elib.dlr.de/186015/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Ship segmentation and georeferencing from static oblique view images | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 1 April 2022 | ||||||||||||||||
Erschienen in: | Sensors | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 22 | ||||||||||||||||
DOI: | 10.3390/s22072713 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
Name der Reihe: | Sensing and Imaging | ||||||||||||||||
ISSN: | 1424-8220 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | ship dataset; instance segmentation; ship georeferencing; homography | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||
Standort: | Bremerhaven | ||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Maritime Sicherheitstechnologien | ||||||||||||||||
Hinterlegt von: | Carrillo Perez, Borja Jesus | ||||||||||||||||
Hinterlegt am: | 11 Apr 2022 07:28 | ||||||||||||||||
Letzte Änderung: | 14 Apr 2022 12:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags