elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Large-scale volumetric flow studies on transport of aerosol particles using a breathing human model with and without face protections

Schröder, Andreas und Schanz, Daniel und Bosbach, Johannes und Novara, Matteo und Geisler, Reinhard und Agocs, Janos und Kohl, Andreas (2022) Large-scale volumetric flow studies on transport of aerosol particles using a breathing human model with and without face protections. Physics of Fluids, 34 (3), Seiten 1-16. American Institute of Physics (AIP). doi: 10.1063/5.0086383. ISSN 1070-6631.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
32MB

Offizielle URL: https://doi.org/10.1063/5.0086383

Kurzfassung

Exhalation of small aerosol particle droplets and their airborne transport, dispersion and (local) accumulation in closed rooms have been identified as the main pathways for direct and indirect respiratory virus transmission from person to person, e.g. for SARS-CoV-2 or measles (Morawska and Cao 2020) (Chen et al. 2021). Therefore, understanding airborne transport mechanisms of aerosol particles inside closed populated rooms is an important key factor for assessing and optimizing various mitigation strategies (Morawska et al. 2020) (Morawska et al. 2013). Unsteady flow features, which are typically evolving in such mixed convection flow scenarios, govern the respective particle transport properties. Experimental and numerical methods are required which enable capturing the related broad range of scales in such internal flows over many cubic meters in order to provide reliable data for the adaptation of proper mitigation measures (distances, masks, shields, air purifiers, ventilation systems etc.). In the present work we show results of a large-scale 3D Lagrangian Particle Tracking (LPT) experiment which has been performed in a 12 m³ generic test room capturing up to 3 million long lived and nearly neutrally buoyant helium-filled soap bubbles (HFSB) with a mean diameter of dHFSB~ 370 µm as (almost) passive tracers. HFSB are used as fluid mechanical replacements for small aerosol particles dP < 5µm and allow to resolve the Lagrangian transport properties and related unsteady flow field inside the whole room around a cyclically breathing thermal manikin (Lange et al. 2012) with and without mouth-nose-masks and shields applied. Six high-resolution CMOS streaming cameras, a large array of powerful pulsed LEDs and the variable-time-step Shake-The-Box (VT-STB) (Schanz et al. 2016, Schanz et al. 2021) LPT algorithm have been applied in this experimental study of internal flows in order to gain insight into the complex transient and turbulent aerosol particle transport and dispersion processes around a seated and breathing human model.

elib-URL des Eintrags:https://elib.dlr.de/185980/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:Physics of Fluids 34, 035133 (2022); Published Online: 29 March 2022; Online: 1089-7666; Paper published as part of the special topic on Flow and the Virus
Titel:Large-scale volumetric flow studies on transport of aerosol particles using a breathing human model with and without face protections
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schröder, Andreasandreas.schroeder (at) dlr.dehttps://orcid.org/0000-0002-6971-9262NICHT SPEZIFIZIERT
Schanz, Danieldaniel.schanz (at) dlr.dehttps://orcid.org/0000-0003-1400-4224NICHT SPEZIFIZIERT
Bosbach, JohannesJohannes.Bosbach (at) dlr.dehttps://orcid.org/0000-0002-1531-127XNICHT SPEZIFIZIERT
Novara, Matteomatteo.novara (at) dlr.dehttps://orcid.org/0000-0002-8975-0419NICHT SPEZIFIZIERT
Geisler, ReinhardReinhard.Geisler (at) dlr.dehttps://orcid.org/0009-0006-8838-3713NICHT SPEZIFIZIERT
Agocs, Janosjanos.agocs (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kohl, Andreasandreas.kohl (at) dlr.dehttps://orcid.org/0000-0001-8351-7256NICHT SPEZIFIZIERT
Datum:29 März 2022
Erschienen in:Physics of Fluids
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:34
DOI:10.1063/5.0086383
Seitenbereich:Seiten 1-16
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
NICHT SPEZIFIZIERTAIP PublishingNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:American Institute of Physics (AIP)
Name der Reihe:AIP
ISSN:1070-6631
Status:veröffentlicht
Stichwörter:Lagrangian Particle Tracking, HFSB, Shake-The-Box, COVID research
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Flugzeug und Validierung
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO
Institut für Aerodynamik und Strömungstechnik > Bodengebundene Fahrzeuge
Hinterlegt von: Micknaus, Ilka
Hinterlegt am:06 Apr 2022 16:01
Letzte Änderung:29 Mär 2023 00:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.