Lee, Chengfa Benjamin und Traganos, Dimosthenis und Reinartz, Peter (2022) A Simple Cloud-Native Spectral Transformation Method to Disentangle Optically Shallow and Deep Waters in Sentinel-2 Images. Remote Sensing, 14 (3), Seite 590. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14030590. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
11MB |
Offizielle URL: https://www.mdpi.com/2072-4292/14/3/590
Kurzfassung
This study presents a novel method to identify optically deep water using purely spectral approaches. Optically deep waters, where the seabed is too deep for a bottom reflectance signal to be returned, is uninformative for seabed mapping. Furthermore, owing to the attenuation of light in the water column, submerged vegetation at deeper depths is easily confused with optically deep waters, thereby inducing misclassifications that reduce the accuracy of these seabed maps. While bathymetry data could mask out deeper areas, they are not always available or of sufficient spatial resolution for use. Without bathymetry data and based on the coastal aerosol blue green (1,2,3) bands of the Sentinel 2 imagery, this study investigates the use of band ratios and a false colour HSV transformation of both L1C and L2A images to separate optically deep and shallow waters across varying water quality over four tropical and temperate submerged sites: Tanzania, the Bahamas, the Caspian Sea (Kazakhstan) and the Wadden Sea (Denmark and Germany). Two supervised thresholds based on annotated reference data and an unsupervised Otsu threshold were applied. The band ratio group usually featured the best overall accuracies (OA), F1 scores and Matthews correlation coefficients, although the individual band combination might not perform consistently across different sites. Meanwhile, the saturation and hue band yielded close to best performance for the L1C and L2A images, featuring OA of up to 0.93 and 0.98, respectively, and a more consistent behaviour than the individual band ratios. Nonetheless, all these spectral methods are still susceptible to sunglint, the Sentinel 2 parallax effect, turbidity and water colour. Both supervised approaches performed similarly and were superior to the unsupervised Otsus method: the supervised methods featuring OA were usually over 0.70, while the unsupervised OA were usually under 0.80. In the absence of bathymetry data, this method could effectively remove optically deep water pixels in Sentinel 2 imagery and reduce the issue of dark pixel misclassification, thereby improving the benthic mapping of optically shallow waters and their seascapes.
elib-URL des Eintrags: | https://elib.dlr.de/185697/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | A Simple Cloud-Native Spectral Transformation Method to Disentangle Optically Shallow and Deep Waters in Sentinel-2 Images. | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 26 Januar 2022 | ||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 14 | ||||||||||||||||
DOI: | 10.3390/rs14030590 | ||||||||||||||||
Seitenbereich: | Seite 590 | ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
Name der Reihe: | Remote Sensing for Shallow and Deep Waters Mapping and Monitoring | ||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | benthic mapping; seabed classification; false colour; HSV; hue; saturation; band ratio; optical water type | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren, R - Fernerkundung u. Geoforschung | ||||||||||||||||
Standort: | Berlin-Adlershof , Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Lee, Chengfa Benjamin | ||||||||||||||||
Hinterlegt am: | 21 Mär 2022 12:15 | ||||||||||||||||
Letzte Änderung: | 29 Mär 2022 09:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags