elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Segmentation-Driven Spacecraft Pose Estimation for Vision-based Relative Navigation in Space

Kajak, Karl Martin und Maddock, Christie und Frei, Heike und Schwenk, Kurt (2021) Segmentation-Driven Spacecraft Pose Estimation for Vision-based Relative Navigation in Space. In: Proceedings of the International Astronautical Congress, IAC. 72nd International Astronautical Congress (IAC 2021), 2021-10-25 - 2021-10-29, Dubai, Vereinigte Arabische Emirate. ISSN 0074-1795.

[img] PDF - Nur DLR-intern zugänglich
4MB

Kurzfassung

Vision-based relative navigation technology is a key enabler of several areas of the space industry such as on-orbit servicing, space debris removal, and formation flying. A particularly demanding scenario is navigating relative to a non-cooperative target that does not offer any navigational aid and is unable to stabilize its attitude. Previously, the state-of-the-art in vision-based relative navigation has relied on image processing and template matching techniques. However, outside of the space industry, state-of-the-art object pose estimation techniques are dominated by convolutional neural networks (CNNs). This is due to CNNs flexibility towards arbitrary pose estimation targets, their ability to use whatever available target features, and robustness towards varied lighting conditions, damage to targets, occlusions, and other effects that might interfere with the image. The use of CNNs for visual relative navigation is still relatively unexplored in terms of how their unique advantages can best be exploited. This research aims to integrate a state-of-the-art CNN-based pose estimation architecture in a relative navigation system. The system's navigation performance is benchmarked on realistic images gathered from the European Proximity Operations Simulator 2.0 (EPOS 2.0) robotic hardware-in-the-loop laboratory. A synthetic dataset is generated using Blender as a rendering engine. A segmentation-based 6D pose estimation CNN is trained using the synthetic dataset and the resulting pose estimation performance is evaluated on a set of real images gathered from the cameras of the EPOS 2.0 robotic close-range relative navigation laboratory. It is demonstrated that a synthetic-image-trained CNN-based pose estimation pipeline is able to successfully perform in a close-range visual navigation setting on real camera images of spacecraft that exhibits, though with some limitations that still have to be surpassed for the system to be ready for operation. Furthermore, it is able to do so with a symmetric target, a common difficulty with neural networks in a pose estimation setting.

elib-URL des Eintrags:https://elib.dlr.de/185541/
Dokumentart:Konferenzbeitrag (Vorlesung)
Titel:Segmentation-Driven Spacecraft Pose Estimation for Vision-based Relative Navigation in Space
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kajak, Karl MartinKarl.Kajak (at) dlr.dehttps://orcid.org/0000-0003-3029-0400NICHT SPEZIFIZIERT
Maddock, Christiechristie.maddock (at) strath.ac.ukhttps://orcid.org/0000-0003-1079-4863NICHT SPEZIFIZIERT
Frei, HeikeHeike.Frei (at) dlr.dehttps://orcid.org/0000-0003-0836-9171NICHT SPEZIFIZIERT
Schwenk, KurtKurt.Schwenk (at) dlr.dehttps://orcid.org/0000-0002-4305-9702NICHT SPEZIFIZIERT
Datum:Oktober 2021
Erschienen in:Proceedings of the International Astronautical Congress, IAC
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
ISSN:0074-1795
Status:veröffentlicht
Stichwörter:close-range relative navigation, pose estimation, symmetric uncooperative target, monocular camera, convolutional neural network, domain randomization
Veranstaltungstitel:72nd International Astronautical Congress (IAC 2021)
Veranstaltungsort:Dubai, Vereinigte Arabische Emirate
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:25 Oktober 2021
Veranstaltungsende:29 Oktober 2021
Veranstalter :International Astronautical Federation (IAF)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - On-Orbit Servicing [SY]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Raumflugbetrieb und Astronautentraining > Raumflugtechnologie
Hinterlegt von: Kajak, Karl Martin
Hinterlegt am:11 Mär 2022 10:25
Letzte Änderung:24 Apr 2024 20:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.