Wozny, Florian (2022) The Impact of COVID-19 on Airfares-A Machine Learning Counterfactual Analysis. Econometrics, 10 (1), Seiten 1-10. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/econometrics10010008. ISSN 2225-1146.
PDF
- Verlagsversion (veröffentlichte Fassung)
368kB |
Offizielle URL: https://www.mdpi.com/2225-1146/10/1/8
Kurzfassung
This paper studies the performance of machine learning predictions for the counterfactual analysis of air transport. It is motivated by the dynamic and universally regulated international air transport market, where ex post policy evaluations usually lack counterfactual control scenarios. As an empirical example, this paper studies the impact of the COVID-19 pandemic on airfares in 2020 as the difference between predicted and actual airfares. Airfares are important from a policy makers’ perspective, as air transport is crucial for mobility. From a methodological point of view, airfares are also of particular interest given their dynamic character, which makes them challenging for prediction. This paper adopts a novel multi-step prediction technique with walk-forward validation to increase the transparency of the model’s predictive quality. For the analysis, the universe of worldwide airline bookings is combined with detailed airline information. The results show that machine learning with walk-forward validation is powerful for the counterfactual analysis of airfares.
elib-URL des Eintrags: | https://elib.dlr.de/185310/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | The Impact of COVID-19 on Airfares-A Machine Learning Counterfactual Analysis | ||||||||
Autoren: |
| ||||||||
Datum: | Februar 2022 | ||||||||
Erschienen in: | Econometrics | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Ja | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 10 | ||||||||
DOI: | 10.3390/econometrics10010008 | ||||||||
Seitenbereich: | Seiten 1-10 | ||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||
ISSN: | 2225-1146 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | machine learning; policy evaluation; aviation | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Ökonver II | ||||||||
Standort: | Köln-Porz | ||||||||
Institute & Einrichtungen: | Institut für Flughafenwesen und Luftverkehr > Luftverkehrsökonomie | ||||||||
Hinterlegt von: | Wozny, Florian | ||||||||
Hinterlegt am: | 03 Mär 2022 12:18 | ||||||||
Letzte Änderung: | 03 Mär 2022 12:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags