elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Modeling the safety and security status of a converter platform using Bayesian networks

Tecklenburg, Babette (2021) Modeling the safety and security status of a converter platform using Bayesian networks. Masterarbeit, Otto-von-Guericke Universität Magdeburg, Hochschule Magdeburg-Stendal.

[img] PDF - Nur DLR-intern zugänglich
36MB

Kurzfassung

In 2020, 5.5 % of the German electricity mix has been produced by the offshore wind industry. It can be expected that the amount of offshore wind energy will increase in medium term due to the change in the German public opinion after nuclear disaster in Fukushima in 2011. Based on their function within a Offshore Windfarm (OWF) the high voltage direct current converterplatform (HVDC converterplatform) are a key infrastructure. When the HVDC converterplatform stops operating the energy production of multiple Offshore Windfarms (OWFs) cannot be submitted to the shore. Therefore, selected safety and security scenarios should be studied. This study introduces a method to transform a process model into a Bayesian network. The developed method can also be applied for the modelling of countermeasures. With Bayesian networks, it is possible to quantify the safety and security status of a offshore platforms. It has been shown that the scenario "unauthorised access" is more likely than the scenario "hard landing of a helicopter at the landing deck". It has also be shown that countermeasures can only partly be modelled.

elib-URL des Eintrags:https://elib.dlr.de/148792/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Modeling the safety and security status of a converter platform using Bayesian networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tecklenburg, BabetteBabette.Tecklenburg (at) dlr.dehttps://orcid.org/0000-0003-0606-0381NICHT SPEZIFIZIERT
Datum:2021
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:202
Status:veröffentlicht
Stichwörter:Threat Modeling Bayesian networks Functional Resonance Analysis Method Offshore Windfarm High voltage direct current converter platform
Institution:Otto-von-Guericke Universität Magdeburg, Hochschule Magdeburg-Stendal
Abteilung:Institute of Apparatus and Environmental Technology
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Bremerhaven
Institute & Einrichtungen:Institut für den Schutz maritimer Infrastrukturen > Resilienz Maritimer Systeme
Hinterlegt von: Tecklenburg, Babette
Hinterlegt am:17 Feb 2022 09:27
Letzte Änderung:17 Feb 2022 09:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.