Schnell, Julian (2021) Building Section Instance Segmentation From Satellite Images Using Deep Learning Networks. Bachelorarbeit, Technical University of Darmstadt.
PDF
2MB |
Kurzfassung
We present an end-to-end deep learning framework for building section instance segmentation. With the combined use of learning based approaches and classical image processing we were able to fulfil the task on World-View4 high resolution imagery and reach high quality results. We show that two well known but different deep learning models can tackle the issue with different architectures and inputs comparably. A ground truth raster image with pixel value 1 for buildings and 2 for their touching borders was generated to train the models to predict both as classes on a semantic output. Most developed frameworks present building segmentation on a semantic level only, which can be crucial when the exact number and boundaries of individual buildings is needed. In our work we post process the semantic outputs with the help of watershed labelling to generate segmentation on the instance level. The approach reaches F1-scores of up to 91.48% for buildings and 43.58% for touching borders.
elib-URL des Eintrags: | https://elib.dlr.de/148771/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Bachelorarbeit) | ||||||||
Titel: | Building Section Instance Segmentation From Satellite Images Using Deep Learning Networks | ||||||||
Autoren: |
| ||||||||
Datum: | 29 März 2021 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Seitenanzahl: | 30 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Deep learning Satellite imagery Building extraction Instance segmentation | ||||||||
Institution: | Technical University of Darmstadt | ||||||||
Abteilung: | Institute for Geodesy | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||
Hinterlegt von: | Henry, Corentin | ||||||||
Hinterlegt am: | 14 Feb 2022 09:45 | ||||||||
Letzte Änderung: | 14 Feb 2022 09:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags