Abdusalamov, Rasul und Pandit, Prakul und Itskov, Mikhail und Milow, Barbara und Rege, Ameya Govind (2021) Predictive modeling and simulation of silica aerogels by using aggregation algorithms. Proceedings in Applied Mathematics and Mechanics, 21 (1), e202100165. Wiley. doi: 10.1002/pamm.202100165. ISSN 1617-7061.
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://onlinelibrary.wiley.com/doi/10.1002/pamm.202100165
Kurzfassung
Silica aerogels are highly porous solids with very low densities and thermal conductivities. Their high porosity results in a fractal morphology which has a strong influence on their mechanical properties. The geometric structure of silica aerogels can be described by diffusion-limited cluster-cluster aggregation (DLCA) models. In this work, the DLCA method is implemented to model silica aerogel networks and investigate the influence of different input parameters, as for example, varying particle sizes on their fractal properties. The resulting model networks are characterized for their fractal properties and compared with the small angle X-ray scattering (SAXS) results of silica aerogels. Furthermore, their mechanical properties are simulated using the finite element method. There, the effect of varying densities on their mechanical properties is examined. In addition, an artificial neural network (ANN) is trained based on the input parameters of the DLCA algorithm to predict the fractal properties of the silica aerogel model. By inverting the ANN it is possible to identify the necessary inputs to generate desired fractal morphologies with specific mechanical properties.
elib-URL des Eintrags: | https://elib.dlr.de/148428/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Predictive modeling and simulation of silica aerogels by using aggregation algorithms | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 14 Dezember 2021 | ||||||||||||||||||||||||
Erschienen in: | Proceedings in Applied Mathematics and Mechanics | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | 21 | ||||||||||||||||||||||||
DOI: | 10.1002/pamm.202100165 | ||||||||||||||||||||||||
Seitenbereich: | e202100165 | ||||||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||||||
ISSN: | 1617-7061 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | machine learning, diffusion-limited aggregation, silica aerogel, fractal dimension | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Energie und Verkehr (alt) | ||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Aerogele und Aerogelverbundwerkstoffe | ||||||||||||||||||||||||
Hinterlegt von: | Rege, Dr. Ameya Govind | ||||||||||||||||||||||||
Hinterlegt am: | 24 Jan 2022 09:06 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Jan 2022 09:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags