elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Forecasting Traffic Congestion States based on Motorway Grid Cells using Floating Car Data

Schulz, Karen (2021) Forecasting Traffic Congestion States based on Motorway Grid Cells using Floating Car Data. Masterarbeit, Darmstadt University of Applied Sciences.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Congestion is a major and increasingly limiting factor for mobility on motorway networks. Using floating car data, congestion states were usually predicted for road segments that were identified by an additional map-matching tool. Not using a map-matcher, 12 billion floating car data observations were cell-wise grouped into two direction classes representing two directions of a motorway. To the best knowledge of the author, the direction distinctive grid-based approach for assigning floating car data to motorway segments is proposed for the first time in this study. The well-known random forest classification algorithm was utilised for developing and forecasting models for single segments and the segment’s collective of 1,000 motorway segments and 45 million observations. Evaluation was based on the metrics F1-score, misclassification rate, and Bookmaker Informedness. Heuristics based on the average velocity of all motorists at specific points on the motorways served as ground truth for forecasting a segment’s congestion state into one of the two classes: free-flowing and congestion. Whole grid forecasting models delivered better results in comparison to single segment models for four highly congested motorway segments. Major influential factors for the five-minute forecast of the segment collective were features regarding the velocity and the traffic count. Whole grid models are seemingly capable of adding value to the congestion state forecast in 5, 10, 20, 30, and 60 minutes in the future in the whole of North Rhine-Westphalia by considerably exceeding the F1 and Bookmaker Informedness baseline scores for the 1,000 sample segments. The computational effort was more than 30% lower when using the direction distinctive grid-based approach in comparison to a map-matcher approach for assigning road segments to 2.6 million floating car data observations.

elib-URL des Eintrags:https://elib.dlr.de/148420/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Forecasting Traffic Congestion States based on Motorway Grid Cells using Floating Car Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schulz, KarenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:1 März 2021
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:96
Status:veröffentlicht
Stichwörter:traffic congestion, FCD, grid, direction-distinctive, segment, ITS, RF
Institution:Darmstadt University of Applied Sciences
Abteilung:Faculties Computer Science & Mathematics and Sciences
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Rhein-Sieg-Kreis
Institute & Einrichtungen:Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen
Hinterlegt von: Brucherseifer, Prof. Dr. Eva
Hinterlegt am:19 Jan 2022 17:56
Letzte Änderung:19 Jan 2022 17:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.