Schlachter, Henning und Geißendörfer, Stefan und von Maydell, Karsten und Agert, Carsten (2021) Voltage-Based Load Recognition in Low Voltage Distribution Grids with Deep Learning. Energies, 15 (1). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en15010104. ISSN 1996-1073.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.mdpi.com/1996-1073/15/1/104
Kurzfassung
Due to the increasing penetration of renewable energies in lower voltage level, there is a need to develop new control strategies to stabilize the grid voltage. For this, an approach using deep learning to recognize electric loads in voltage profiles is presented. This is based on the idea to classify loads in the local grid environment of an inverter’s grid connection point to provide information for adaptive control strategies. The proposed concept uses power profiles to systematically generate training data. During hyper-parameter optimizations, multi-layer perceptron (MLP) and convolutional neural networks (CNN) are trained, validated, and evaluated to determine the best task configurations. The approach is demonstrated on the example recognition of two electric vehicles. Finally, the influence of the distance in a test grid from the transformer and the active load to the measurement point, respectively, onto the recognition accuracy is investigated. A larger distance between the inverter and the transformer improved the recognition, while a larger distance between the inverter and active loads decreased the accuracy. The developed concept shows promising results in the simulation environment for adaptive voltage control.
elib-URL des Eintrags: | https://elib.dlr.de/147904/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Voltage-Based Load Recognition in Low Voltage Distribution Grids with Deep Learning | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 23 Dezember 2021 | ||||||||||||||||||||
Erschienen in: | Energies | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 15 | ||||||||||||||||||||
DOI: | 10.3390/en15010104 | ||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
ISSN: | 1996-1073 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | deep learning; load recognition; low voltage grid; grid management; electric vehicles | ||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemtechnologie | ||||||||||||||||||||
Hinterlegt von: | Schlachter, Henning | ||||||||||||||||||||
Hinterlegt am: | 05 Jan 2022 14:43 | ||||||||||||||||||||
Letzte Änderung: | 10 Jan 2022 08:17 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags