elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Pulsed Impingement Turbine Cooling and Its Effect on the Efficiency of Gas Turbines With Pressure Gain Combustion

Neumann, Nicolai und Berthold, Arne und Haucke, Frank und Peitsch, Dieter und Stathopoulos, Panagiotis (2021) Pulsed Impingement Turbine Cooling and Its Effect on the Efficiency of Gas Turbines With Pressure Gain Combustion. Journal of Turbomachinery, 143 (7). American Society of Mechanical Engineers (ASME). doi: 10.1115/1.4050361. ISSN 0889-504X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://doi.org/10.1115/1.4050361

Kurzfassung

Performance improvements of conventional gas turbines are becoming increasingly difficult and costly to achieve. Pressure gain combustion (PGC) has emerged as a promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine cycle. Previous cycle analyses considering turbine cooling methods have shown that the application of pressure gain combustion may require more turbine cooling air. This has a direct impact on the cycle efficiency and reduces the possible efficiency gain that can potentially be harvested from the new combustion technology. Novel cooling techniques could unlock an existing potential for a further increase in efficiency. Such a novel turbine cooling approach is the application of pulsed impingement jets inside the turbine blades. In the first part of this paper, results of pulsed impingement cooling experiments on a curved plate are presented. The potential of this novel cooling approach to increase the convective heat transfer in the inner side of turbine blades is quantified. The second part of this paper presents a gas turbine cycle analysis where the improved cooling approach is incorporated in the cooling air calculation. The effect of pulsed impingement cooling on the overall cycle efficiency is shown for both Joule and PGC cycles. In contrast to the authors` anticipation, the results suggest that for relevant thermodynamic cycles pulsed impingement cooling increases the thermal efficiency of Joule cycles more significantly than it does in the case of PGC cycles. Thermal efficiency improvements of 1.0 p.p. for pure convective cooling and 0.5 p.p. for combined convective and film with TBC are observed for Joule cycles. But just up to 0.5 p.p. for pure convective cooling and 0.3 p.p. for combined convective and film cooling with TBC are recorded for PGC cycles.

elib-URL des Eintrags:https://elib.dlr.de/147772/
Dokumentart:Zeitschriftenbeitrag
Titel:Pulsed Impingement Turbine Cooling and Its Effect on the Efficiency of Gas Turbines With Pressure Gain Combustion
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Neumann, NicolaiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Berthold, ArneNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Haucke, FrankNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Peitsch, DieterNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Stathopoulos, PanagiotisNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2 März 2021
Erschienen in:Journal of Turbomachinery
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:143
DOI:10.1115/1.4050361
Verlag:American Society of Mechanical Engineers (ASME)
ISSN:0889-504X
Status:veröffentlicht
Stichwörter:gas turbine, pressure gain combustion, performance analyses, unsteady heat transfer, impingement cooling, pulsating jets, dynamic forcing, experiment
HGF - Forschungsbereich:Energie
HGF - Programm:Energiesystemdesign
HGF - Programmthema:Digitalisierung und Systemtechnologie
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemtechnologie und -analyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Energiesystemtechnologie, E - Gasturbine
Standort: Cottbus
Institute & Einrichtungen:Institut für CO2-arme Industrieprozesse
Hinterlegt von: Stathopoulos, Panagiotis
Hinterlegt am:17 Dez 2021 17:11
Letzte Änderung:20 Okt 2023 08:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.