elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Parameterisation of Physics-Based Battery Models From Few Noisy Measurements

Kuhn, Yannick und Horstmann, Birger und Latz, Arnulf (2021) Parameterisation of Physics-Based Battery Models From Few Noisy Measurements. COMPDYN-UNCECOMP-EUROGEN 2021, 2021-06-28 - 2021-06-30, Athen, Griechenland.

[img] PDF
118kB

Kurzfassung

A wealth of measurement techniques are available for determining the transport or thermodynamic properties of batteries. Some examples are the Galvanostatic Intermittent Titration Technique, nuclear magnetic resonance imaging or impedance spectroscopy, which are excellent at retrieving a subset of battery model parameters. They achieve this at the cost of accuracy and compatibility since each employs a different approximation in order to obtain analytic expressions. So it remains a challenge to obtain a complete and consistent parameter set that is useful for running simulations that can accurately predict future battery behaviour. Exacerbating this challenge is the long runtime and/or high cost of any battery measurement, which means that in practice only a few measurements of varying type with considerable noise are available and that the parameters might change between measurements due to battery ageing. Due to the complexity of the widely used Doyle-Fuller�Newman model and its simplifications, their parameters are not directly observable in normal battery operation. Thus, some measurements involve the destruction of the battery, which make the parallel parameterisation of "identical" batteries with slightly different manufacturing defects necessary. The goal is to enable automated material screening with a flexible selection of various measurements. The issues described above necessitate that an inverse parameter identification algorithm for this task is aware of the uncertainties in the parameters and the measurements and can quantify the uncertainties of the estimated parameters. These uncertainties are most certainly intractable, so we decided on a Bayesian approach where the likelihood is substituted by a simulator, realised with Expectation Propagation and Bayesian Optimisation. We will discuss the results of their application.

elib-URL des Eintrags:https://elib.dlr.de/147393/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Parameterisation of Physics-Based Battery Models From Few Noisy Measurements
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kuhn, Yannickyannick.kuhn (at) dlr.dehttps://orcid.org/0000-0002-9019-2290NICHT SPEZIFIZIERT
Horstmann, Birgerbirger.horstmann (at) dlr.dehttps://orcid.org/0000-0002-1500-0578NICHT SPEZIFIZIERT
Latz, Arnulfarnulf.latz (at) dlr.dehttps://orcid.org/0000-0003-1449-8172NICHT SPEZIFIZIERT
Datum:2021
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:battery modelling, uncertainty quantification, bayesian optimisiation
Veranstaltungstitel:COMPDYN-UNCECOMP-EUROGEN 2021
Veranstaltungsort:Athen, Griechenland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:28 Juni 2021
Veranstaltungsende:30 Juni 2021
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Elektrochemische Energiespeicherung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Speicher
Standort: Ulm
Institute & Einrichtungen:Institut für Technische Thermodynamik > Computergestützte Elektrochemie
Hinterlegt von: Werres, Martin Alexander
Hinterlegt am:23 Dez 2021 10:01
Letzte Änderung:24 Apr 2024 20:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.