elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Increased Robustness of Object Detection on Aerial Image Datasets using Simulated Imagery

Konen, Kai und Hecking, Tobias (2021) Increased Robustness of Object Detection on Aerial Image Datasets using Simulated Imagery. In: 4th IEEE International Conference on Artificial Intelligence and Knowledge Engineering, AIKE 2021. 3rd IEEE Conference on Artificial Intelligence and Knowledge Engineering, 2021-12-01, Laguna Hills, CA. doi: 10.1109/AIKE52691.2021.00007. ISBN 978-1-6654-3736-3. (im Druck)

[img] PDF - Nur DLR-intern zugänglich
13MB

Kurzfassung

Machine learning-based models for object detectionrely on large datasets of labeled images, such as COCO orImageNet. When models trained on these datasets are appliedto aerial images recorded on Unmanned Aerial Vehicles (UAVs),the problem arises that the conditions under which the trainingimages were created (for example, light, altitude, or angle) maybe different in the environment where the UAVs are put intopractice, leading to failed detections. This problem becomes evenmore pressing in safety critical applications where failures canhave huge negative impacts and also constitutes an obstaclefor certification of cognitive components in UAVs. Along a casestudy on car detection in low-altitude aerial imagery, we showthat using, both, artificial and real images for model traininghas a positive effect on the performance of object detectionalgorithms when the trained model is applied on images fromanother domain. Since simulated images are easy to create andobject labels are inherently given, the presented approach showsa promising direction for scenarios where adequate datasets aredifficult to obtain, as well as for targeted exploration of weakpoints of object detection algorithms.

elib-URL des Eintrags:https://elib.dlr.de/147100/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Increased Robustness of Object Detection on Aerial Image Datasets using Simulated Imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Konen, KaiKai.Konen (at) dlr.dehttps://orcid.org/0000-0001-7957-4477NICHT SPEZIFIZIERT
Hecking, TobiasTobias.Hecking (at) dlr.dehttps://orcid.org/0000-0003-0833-7989NICHT SPEZIFIZIERT
Datum:Dezember 2021
Erschienen in:4th IEEE International Conference on Artificial Intelligence and Knowledge Engineering, AIKE 2021
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/AIKE52691.2021.00007
ISBN:978-1-6654-3736-3
Status:im Druck
Stichwörter:Object Detection, Aerial Image Datasets, Simu-lation, UAVs, YoloV4
Veranstaltungstitel:3rd IEEE Conference on Artificial Intelligence and Knowledge Engineering
Veranstaltungsort:Laguna Hills, CA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:1 Dezember 2021
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):L - keine Zuordnung
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie
Institut für Softwaretechnologie > Intelligente und verteilte Systeme
Hinterlegt von: Hecking, Dr. Tobias
Hinterlegt am:13 Dez 2021 10:36
Letzte Änderung:24 Apr 2024 20:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.