elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Dynamic interferometric wavefront sensor for strong turbulence conditions based on polarization imaging sensor

Helde, Fabian und Buske, Ivo (2021) Dynamic interferometric wavefront sensor for strong turbulence conditions based on polarization imaging sensor. In: Environmental Effects on Light Propagation and Adaptive Systems IV 2021. SPIE Remote Sensing 2021, 2021-09-13 - 2021-09-16, Madrid, Spanien. doi: 10.1117/12.2600418. ISBN 978-1-5106-4565-3. ISSN 0277-786X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Adaptive Optics (AO) systems for the compensation of optical turbulence in the atmosphere have been proven to work well within certain boundaries. Under strong turbulence conditions, AO based on conventional gradient wavefront sensors such as the Shack-Hartmann combined with linear least-squares reconstructors have shown to perform poorly due to the occurrence of phase singularities, that inherently cannot be reconstructed by the least-squares method. Directwavefront sensors, measuring phase differences directly rather than the gradient, avoid this problem of reconstruction. The self-referencing point-diffraction interferometer, a concept for direct-wavefront sensing that relies on the principle of spatial filtering to generate a (theoretically) unaberrated reference wave from the incoming aberrated wavefront, was early identified as a strong contender for an advanced wavefront sensor in strong turbulence conditions. Several authors have presented such systems. They make use of either the Fourier-transform method or instantaneous phase-shifted interferograms imaged by a complex optical set-up on a single image sensor. This paper evaluates a dynamic selfreferencing point-diffraction interferometer based on a pixelated polarization filter array imaging sensor for instantaneous spatial phase-shifting, promising a simpler optical set-up than other instantaneous phase-shifting approaches while retaining the advantage of less computational requirement compared with Fourier-transform methods.

elib-URL des Eintrags:https://elib.dlr.de/147013/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Dynamic interferometric wavefront sensor for strong turbulence conditions based on polarization imaging sensor
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Helde, FabianF.Helde (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Buske, IvoIvo.Buske (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2021
Erschienen in:Environmental Effects on Light Propagation and Adaptive Systems IV 2021
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1117/12.2600418
Name der Reihe:Proceedings of SPIE
ISSN:0277-786X
ISBN:978-1-5106-4565-3
Status:veröffentlicht
Stichwörter:optical turbulence, dynamic interferometry, instantaneous single-shot interferometry, phase shifting interferometry, self-referencing point diffraction interferometry, wavefront sensing, laser beam propagation, pixelated filter array, spatial light modulator
Veranstaltungstitel:SPIE Remote Sensing 2021
Veranstaltungsort:Madrid, Spanien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:13 September 2021
Veranstaltungsende:16 September 2021
Veranstalter :SPIE
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L DT - Verteidigungstechnologie
DLR - Teilgebiet (Projekt, Vorhaben):L -  Wirkung
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Physik > Aktive optische Systeme
Hinterlegt von: Buske, Dr.-Ing. Ivo
Hinterlegt am:15 Dez 2021 10:25
Letzte Änderung:24 Apr 2024 20:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.