Kliebisch, Oliver und Uittenbosch, Hugo und Thurn, Johann und Mahnke, Peter (2022) Coherent Doppler wind lidar with real-time wind processing and low signal-to-noise ratio reconstruction based on a convolutional neural network. Optics Express, 30 (4), Seiten 5540-5552. Optical Society of America. doi: 10.1364/OE.445287. ISSN 1094-4087.
PDF
- Verlagsversion (veröffentlichte Fassung)
10MB |
Offizielle URL: https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-4-5540&id=469231
Kurzfassung
Multi-classification using a convolutional neural network (CNN) is proposed as a denoising method for coherent Doppler wind lidar (CDWL) data. The method is intended to enhance the usable range of a CDWL beyond the atmospheric boundary layer (ABL). The method is implemented and tested in an all-fiber pulsed CWDL system operating at 1550 nm wavelength with 20 kHz repetition rate, 300 ns pulse length and 180 µJ of laser energy. A real-time pre-processing using a field programmable gate array (FPGA) is implemented producing averaged lidar spectrograms. Real-world measurement data is labeled using conventional frequency estimators and mixed with simulated spectrograms for training of the CNN. First results of this methods show that the CNN outperforms conventional frequency estimations substantially in terms of maximum range and delivers reasonable output in very low signal-to-noise (SNR) situations while still delivering accurate results in the high-SNR regime. Comparing the CNN output with radiosonde data shows the feasibility of the proposed method.
elib-URL des Eintrags: | https://elib.dlr.de/146908/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Coherent Doppler wind lidar with real-time wind processing and low signal-to-noise ratio reconstruction based on a convolutional neural network | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | Optics Express | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 30 | ||||||||||||||||||||
DOI: | 10.1364/OE.445287 | ||||||||||||||||||||
Seitenbereich: | Seiten 5540-5552 | ||||||||||||||||||||
Verlag: | Optical Society of America | ||||||||||||||||||||
ISSN: | 1094-4087 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Wind-Lidar,Lidar,Laser,FPGA,Fasern,Lichtwellenleiter,Neuronale Netzwerke,Machine Learning,CNN,Convolutional Neural Networks | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Flugzeugsysteme | ||||||||||||||||||||
Standort: | Stuttgart | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Technische Physik > Festkörperlaser und Nichtlineare Optik | ||||||||||||||||||||
Hinterlegt von: | Kliebisch, Oliver | ||||||||||||||||||||
Hinterlegt am: | 09 Feb 2022 13:45 | ||||||||||||||||||||
Letzte Änderung: | 29 Nov 2022 09:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags