elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Responding to the flood emergency in Germany with the use of high tech from the space

Schwendemann, Gina Maricela (2021) Responding to the flood emergency in Germany with the use of high tech from the space. In: UN-SPIDER Bonn International Conference (virtual). UN-SPIDER/ZFL Bonn virtual International Conference, 2021-11-16 - 2021-11-18, Bonn, Deutschland.

[img] PDF
4MB

Kurzfassung

Nowadays, it is very often to see in the news around the world how wild rivers outside the control destroyed houses and flooded cities. This July in Germany, heavy rains caused floods and 182 casualties in North Rhine-Westphalia and Rhineland-Palatine. In this context, one of the first questions was, which villages were affected? Optical images only showed clouds. SAR (Synthetic Aperture Radar) images yielded poor results of flood detection. In this context, DLR took aerial photography of < 0.15 m resolution to perform flood damage analysis. The images were analysed by one operator by means of the ESRI deep learning framework. The flood damage training samples were obtained manually from 1.5 km² of image and the Mask-RCNN (Mask Region-Based - Convolutional Neural Network) model/algorithm was used to train them. The post-processed Mask R-CNN output were delivered in time to the federal institutions for their humanitarian actions of rescue and reconstruction. The results of the accuracy assessment methods will be published soon in a scientific paper.

elib-URL des Eintrags:https://elib.dlr.de/146736/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Responding to the flood emergency in Germany with the use of high tech from the space
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schwendemann, Gina Maricelagina.schwendemann (at) dlr.dehttps://orcid.org/0000-0002-8589-6445NICHT SPEZIFIZIERT
Datum:16 November 2021
Erschienen in:UN-SPIDER Bonn International Conference (virtual)
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:food damage detection, Mask R-CNN
Veranstaltungstitel:UN-SPIDER/ZFL Bonn virtual International Conference
Veranstaltungsort:Bonn, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 November 2021
Veranstaltungsende:18 November 2021
Veranstalter :United Nations Platform for Space-based Information for Disaster Management and Emergency Response(UN-SPIDER), Zentrum für Fernerkundung der Landoberfläche (ZFL) Universität Bonn
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz, R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Schwendemann, M. Sc(TUM) Gina Maricela
Hinterlegt am:06 Dez 2021 10:00
Letzte Änderung:24 Apr 2024 20:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.