Baumeister, Philipp und Tosi, Nicola und Grenfell, John Lee und MacKenzie, Jasmine (2021) Water oceans on high-density exoplanets from coupled interior-atmosphere modeling. European Planetary Science Congress 2021, 2021-09-13 - 2021-09-24, virtuell. doi: 10.5194/epsc2021-270.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://meetingorganizer.copernicus.org/EPSC2021/EPSC2021-270.html
Kurzfassung
Liquid water is generally assumed to be the most important factor for the emergence of life, and so a major goal in exoplanet science is the search for planets with water oceans. On terrestrial planets, the silicate mantle is a large source of water, which can be outgassed into the atmosphere via volcanism. Outgassing is subject to a series of feedback processes between atmosphere and interior, which continually shape both atmospheric composition, pressure, and temperature, as well as interior dynamics. For example, water has a high solubility in surface lava, which can strongly limit its outgassing into the atmosphere even at low atmospheric pressures. In contrast, CO2 can be easily outgassed. This drives up the surface pressure and temperature, potentially preventing further water outgassing [1]. We present the results of an extensive parameter study, where we use a newly developed 1D numerical model to simulate the coupled evolution of the atmosphere and interior of terrestrial exoplanets up to 5 Earth masses around Sun-like stars, with internal structures ranging from Moon- to Mercury-like. The model accounts for the main mechanisms controlling the global-scale, long-term evolution of stagnant-lid rocky planets (i.e. bodies without plate tectonics), and it includes a large number of atmosphere-interior feedback processes, such as a CO2 weathering cycle, volcanic outgassing based on the pressure-dependent solubility of volatiles in surface lava, a water cycle between ocean and atmosphere, greenhouse heating, as well as the influence of a primordial H2 atmosphere, which can be lost through escape processes. While many atmosphere-interior feedback processes have been studied before in detail (e.g. [2, 3]), we present here a comprehensive model combining the important planetary processes across a wide range of terrestrial planets. We find that a significant majority of high-density exoplanets (i.e. Mercury-like planets with large cores) are able to outgas and sustain water on their surface. In contrast, most planets with intermediate, Earth-like densities either transition into a runaway greenhouse regime due to strong CO2 outgassing, or retain part of their primordial atmosphere, which prevents water from being outgassed. This suggests that high-density planets could be the most promising targets when searching for suitable candidates for hosting liquid water. Furthermore, the degeneracy of the interior structures of high-density planets is limited compared to that of planets with Earth-like density, which further facilitates the characterization of these bodies, and our results predict largely uniform atmospheric compositions across the range of high-density planets, which could be verified by future spectroscopic measurements. References: [1] Tosi, N. et al. The habitability of a stagnant-lid earth. A&A 605, A71 (2017). [2] Noack, L., Rivoldini, A. & Van Hoolst, T. Volcanism and outgassing of stagnant-lid planets: Implications for the habitable zone. Physics of the Earth and Planetary Interiors 269, 40-57 (2017). [3] Foley, B. J. & Smye, A. J. Carbon Cycling and Habitability of Earth-Sized Stagnant Lid Planets. Astrobiology 18, 873-896 (2018).
elib-URL des Eintrags: | https://elib.dlr.de/146528/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Water oceans on high-density exoplanets from coupled interior-atmosphere modeling | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 22 September 2021 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Band: | 15 | ||||||||||||||||||||
DOI: | 10.5194/epsc2021-270 | ||||||||||||||||||||
Seitenbereich: | epsc2021-270 | ||||||||||||||||||||
Name der Reihe: | EPSC Abstracts | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | exoplanet, interior, outgassing, atmosphere, volcanism, geodynamics, habitability | ||||||||||||||||||||
Veranstaltungstitel: | European Planetary Science Congress 2021 | ||||||||||||||||||||
Veranstaltungsort: | virtuell | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 13 September 2021 | ||||||||||||||||||||
Veranstaltungsende: | 24 September 2021 | ||||||||||||||||||||
Veranstalter : | Europlanet Society | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Planetary Evolution and Life, R - Exploration des Sonnensystems | ||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetenphysik Institut für Planetenforschung > Extrasolare Planeten und Atmosphären | ||||||||||||||||||||
Hinterlegt von: | Baumeister, Philipp | ||||||||||||||||||||
Hinterlegt am: | 01 Dez 2021 08:52 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags