elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Exploring statistical relationships between social media sentiment and COVID-19 incidence rates

Fest, Felix (2021) Exploring statistical relationships between social media sentiment and COVID-19 incidence rates. Bachelorarbeit, Friedrich-Schiller-Universität Jena / DLR Institute of Data Science.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

In a crisis like the Corona pandemic, social media are often regarded as a mirror of society. With the help of the data obtained from such a social network, various methods can be used to determine how good the sentiment is on the respective network by deriving so-called sentiment scores from the messages of the users. This bachelor thesis aims to find out whether social media sentiments on Twitter can be explained by temporal patterns in COVID-19, such as case numbers, deaths and intensive care bed occupancy, taking into account general trends such as temperature and time itself. For this purpose various linear regression models were set up. First, regression models were set up for the federal state of Thuringia as a representative of a state with a fairly low amount of weekly tweets. Afterwards the same regression models were set up for the federal state of North Rhine-Westphalia, representing a state with a quite high amount of weekly tweets. The models are then analysed and compared to find out whether the differences in sentiment can be explained by the chosen factors and to ascertain whether there are differences between the two states.

elib-URL des Eintrags:https://elib.dlr.de/146304/
Dokumentart:Hochschulschrift (Bachelorarbeit)
Titel:Exploring statistical relationships between social media sentiment and COVID-19 incidence rates
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fest, Felixfelix.fest (at) uni-jena.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2021
Erschienen in:Twitter Stream Clustering for the Identification and Contextualization of Event-related Tweets
Referierte Publikation:Ja
Open Access:Ja
Seitenanzahl:46
Status:veröffentlicht
Stichwörter:Twitter sentiment, linear regression, correlation analysis, Covid-19
Institution:Friedrich-Schiller-Universität Jena / DLR Institute of Data Science
Abteilung:Department of Geography / Citizen Science
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Umwelt, Gesundheit und Big Data, R - QS-Projekt_04 Big-Data-Plattform
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften > Bürgerwissenschaften
Hinterlegt von: Kersten, Dr.-Ing. Jens
Hinterlegt am:29 Nov 2021 19:56
Letzte Änderung:30 Nov 2021 14:31

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.