elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep learning for surrogate modelling of 2D mantle convection

Agarwal, Siddhant und Tosi, Nicola und Kessel, P und Breuer, Doris und Montavon, Grégoire (2021) Deep learning for surrogate modelling of 2D mantle convection. 74th Annual Meeting of the American Physical Society’s Division of Fluid Dynamics, 2021-11-21 - 2021-11-22, Online.

Dies ist die aktuellste Version dieses Eintrags.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://meetings.aps.org/Meeting/DFD20/Session/R01.9

Kurzfassung

Exploring the high-dimensional parameter space governing 2D or 3D mantle convection simulations of terrestrial planets is computationally challenging. Hence, surrogates are helpful. Using 10,500 simulations of Mars’ thermal evolution carried out in a 2D cylindrical-shell geometry, we demonstrated that feedforward neural networks (FNN) can take five key parameters (initial temperature, radial distribution of radiogenic elements, reference viscosity, pressure- and temperature-dependence of the viscosity) plus time as an additional variable, and predict the 1D horizontally-averaged temperature profile at any time during 4.5 billion years of evolution (Agarwal et al. 2020). We now extend this work to predict the entire 2D temperature field which contains more information than the 1D profile such as the structure of plumes and downwellings. First, we compress the temperature fields by a factor of ~140 using a convolutional autoencoder. Then, we compare the use of FNN and long-short term memory networks (LSTM) for predicting this compressed state. While FNN predictions are slightly more accurate, LSTMs ultimately capture the flow dynamics significantly better. The entire spatio-temporal evolution of the temperature field can thus be predicted for a wide range of parameters.

elib-URL des Eintrags:https://elib.dlr.de/146292/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Deep learning for surrogate modelling of 2D mantle convection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Agarwal, SiddhantSiddhant.Agarwal (at) dlr.dehttps://orcid.org/0000-0002-0840-2114NICHT SPEZIFIZIERT
Tosi, Nicolanicola.tosi (at) dlr.dehttps://orcid.org/0000-0002-4912-2848NICHT SPEZIFIZIERT
Kessel, PTechnical University BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Breuer, DorisDoris.Breuer (at) dlr.dehttps://orcid.org/0000-0001-9019-5304NICHT SPEZIFIZIERT
Montavon, GrégoireInstitut für Softwaretechnik und Theoretische Informatik, Technische Universität BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2021
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Mantle Convection, Machine Learning, Fluid Dynamics, Surrogate Modelling, Neural Networks
Veranstaltungstitel:74th Annual Meeting of the American Physical Society’s Division of Fluid Dynamics
Veranstaltungsort:Online
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:21 November 2021
Veranstaltungsende:22 November 2021
Veranstalter :American Physical Society
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Agarwal, Siddhant
Hinterlegt am:26 Nov 2021 12:45
Letzte Änderung:24 Apr 2024 20:45

Verfügbare Versionen dieses Eintrags

  • Deep learning for surrogate modelling of 2D mantle convection. (deposited 26 Nov 2021 12:45) [Gegenwärtig angezeigt]

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.