Guan, Banglei und Zhao, Ji und Barath, Daniel und Fraundorfer, Friedrich (2021) Minimal Cases for Computing the Generalized Relative Pose Using Affine Correspondences. In: 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021, Seiten 1-10. IEEE International Conference on Computer Vision, 2021-10-10 - 2021-10-17, Canada. doi: 10.1109/ICCV48922.2021.00601. ISBN 978-166542812-5. ISSN 1550-5499.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9710600
Kurzfassung
We propose three novel solvers for estimating the relative pose of a multi-camera system from affine correspondences (ACs). A new constraint is derived interpreting the relationship of ACs and the generalized camera model. Using the constraint, we demonstrate efficient solvers for two types of motions assumed. Considering that the cameras undergo planar motion, we propose a minimal solution using a single AC and a solver with two ACs to overcome the degenerate case. Also, we propose a minimal solution using two ACs with known vertical direction, e.g., from an IMU. Since the proposed methods require significantly fewer correspondences than state-of-the-art algorithms, they can be efficiently used within RANSAC for outlier removal and initial motion estimation. The solvers are tested both on synthetic data and on real-world scenes from the KITTI odometry benchmark. It is shown that the accuracy of the estimated poses is superior to the state-of-the-art techniques.
elib-URL des Eintrags: | https://elib.dlr.de/146201/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Minimal Cases for Computing the Generalized Relative Pose Using Affine Correspondences | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2021 | ||||||||||||||||||||
Erschienen in: | 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/ICCV48922.2021.00601 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-10 | ||||||||||||||||||||
ISSN: | 1550-5499 | ||||||||||||||||||||
ISBN: | 978-166542812-5 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | affine correspondences (ACs), KITTI odometry benchmark | ||||||||||||||||||||
Veranstaltungstitel: | IEEE International Conference on Computer Vision | ||||||||||||||||||||
Veranstaltungsort: | Canada | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 10 Oktober 2021 | ||||||||||||||||||||
Veranstaltungsende: | 17 Oktober 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Knickl, Sabine | ||||||||||||||||||||
Hinterlegt am: | 30 Nov 2021 14:21 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags