Sormann, Christian und Rossi, Mattia und Kuhn, Andreas und Fraundorfer, Friedrich (2021) IB-MVS: An iterative algorithm for deep multi-view stereo based on binary decisions. 32th British Machine Vision Conference (BMVC), 2021-11-22 - 2021-11-25, UK Online.
PDF
3MB |
Offizielle URL: https://www.bmvc2021-virtualconference.com/assets/papers/0902.pdf
Kurzfassung
We present a novel deep-learning-based method for Multi-View stereo. Our method estimates high resolution and highly precise depth maps iteratively, by traversing the continuous space of feasible depth values at each pixel in a binary decision fashion. The decision process leverages a deep-network architecture: this computes a pixelwise binary mask that establishes whether each pixel actual depth is in front or behind its current iteration individual depth hypothesis. Moreover, in order to handle occluded regions, at each iteration the results from different source images are fused using pixelwise weights estimated by a second network. Thanks to the adopted binary decision strategy, which permits an efficient exploration of the depth space, our method can handle high resolution images without trading resolution and precision. This sets it apart from most alternative learning-based Multi-View Stereo methods, where the explicit discretization of the depth space requires the processing of large cost volumes. We compare our method with state-of-the-art Multi-View Stereo methods on the DTU, Tanks and Temples and the challenging ETH3D benchmarks and show competitive results
elib-URL des Eintrags: | https://elib.dlr.de/146178/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | IB-MVS: An iterative algorithm for deep multi-view stereo based on binary decisions | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2021 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 1-13 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | high resolution, highly precise depth maps iterativelly, depth values, deep-network architecture | ||||||||||||||||||||
Veranstaltungstitel: | 32th British Machine Vision Conference (BMVC) | ||||||||||||||||||||
Veranstaltungsort: | UK Online | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 22 November 2021 | ||||||||||||||||||||
Veranstaltungsende: | 25 November 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Knickl, Sabine | ||||||||||||||||||||
Hinterlegt am: | 30 Nov 2021 14:07 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags