Waxenegger-Wilfing, Günther und Dresia, Kai und Deeken, Jan C. und Oschwald, Michael (2021) A Reinforcement Learning Approach for Transient Control of Liquid Rocket Engines. IEEE Transactions on Aerospace and Electronic Systems, 57 (5), Seiten 2938-2952. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TAES.2021.3074134. ISSN 0018-9251.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9409671
Kurzfassung
Nowadays, liquid rocket engines use closed-loop control at most near-steady operating conditions. The control of the transient phases is traditionally performed in open loop due to highly nonlinear system dynamics. This situation is unsatisfactory, in particular for reusable engines. The open-loop control system cannot provide optimal engine performance due to external disturbances or the degeneration of engine components over time. In this article, we study a deep reinforcement learning approach for optimal control of a generic gas-generator engine's continuous startup phase. It is shown that the learned policy can reach different steady-state operating points and convincingly adapt to changing system parameters. Compared to carefully tuned open-loop sequences and proportional-integral-derivative (PID) controllers, the deep reinforcement learning controller achieves the highest performance. In addition, it requires only minimal computational effort to calculate the control action, which is a big advantage over approaches that require online optimization, such as model predictive control.
elib-URL des Eintrags: | https://elib.dlr.de/146167/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | A Reinforcement Learning Approach for Transient Control of Liquid Rocket Engines | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 21 April 2021 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Aerospace and Electronic Systems | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 57 | ||||||||||||||||||||
DOI: | 10.1109/TAES.2021.3074134 | ||||||||||||||||||||
Seitenbereich: | Seiten 2938-2952 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0018-9251 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | engines, rockets, liquids, transient analysis, optimal control, training, reinforcement learning | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Raumtransport | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt LUMEN (Liquid Upper Stage Demonstrator Engine) | ||||||||||||||||||||
Standort: | Lampoldshausen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Raumfahrtantriebe > Raketenantriebssysteme | ||||||||||||||||||||
Hinterlegt von: | Hanke, Michaela | ||||||||||||||||||||
Hinterlegt am: | 26 Nov 2021 07:51 | ||||||||||||||||||||
Letzte Änderung: | 05 Dez 2023 07:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags