Ainetter, Stefan und Böhm, Christoph und Dhakate, Rohit Sudhakar und Weiss, Stephan und Fraundorfer, Friedrich (2021) Depth-aware object segmentation and grasp detection for robotic picking tasks. 32th British Machine Vision Conference (BMVC), 2021-11-22 - 2021-11-25, UK, Online.
PDF
5MB |
Offizielle URL: https://www.bmvc2021-virtualconference.com/
Kurzfassung
In this paper, we present a novel deep neural network architecture for joint classagnostic object segmentation and grasp detection for robotic picking tasks using a parallelplate gripper. We introduce depth-aware Coordinate Convolution (CoordConv), a method to increase accuracy for point proposal based object instance segmentation in complex scenes without adding any additional network parameters or computation complexity. Depth-aware CoordConv uses depth data to extract prior information about the location of an object to achieve highly accurate object instance segmentation. These resulting segmentation masks, combined with predicted grasp candidates, lead to a complete scene description for grasping using a parallel-plate gripper. We evaluate the accuracy of grasp detection and instance segmentation on challenging robotic picking datasets, namely Siléane and OCID_grasp, and show the benefit of joint grasp detection and segmentation on a real-world robotic picking task.
elib-URL des Eintrags: | https://elib.dlr.de/146050/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Depth-aware object segmentation and grasp detection for robotic picking tasks | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-13 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | novel deep neural network architecture, joint classagnostic object segmentation | ||||||||||||||||||||||||
Veranstaltungstitel: | 32th British Machine Vision Conference (BMVC) | ||||||||||||||||||||||||
Veranstaltungsort: | UK, Online | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 22 November 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 25 November 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt), R - Optische Fernerkundung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Knickl, Sabine | ||||||||||||||||||||||||
Hinterlegt am: | 25 Nov 2021 10:59 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags