elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Experimental study of intra-injector flow fluctuations induced by a LOX injector orifice driving combustion instability

Son, Min und Börner, Michael und Hardi, Justin (2021) Experimental study of intra-injector flow fluctuations induced by a LOX injector orifice driving combustion instability. Symposium on Thermoacoustics in Combustion: Industry meets Academia (SoTiC 2020), 2021-09-14 - 2021-09-17, Virtual.

[img] PDF - Nur DLR-intern zugänglich
978kB

Kurzfassung

In combustion chambers of rocket engines, injector flow dynamics can be one of the triggers of injector-coupled high-frequency (HF) and low-frequency (LF) instabilities, which were observed during hot-fire tests of research combustors at DLR. The whistling flow from the LOX post orifice was hypothesized as the excitation source of the acoustic eigenmodes of the LOX posts, which led to an excitation of HF instabilities, whereas the two-phase flow across the orifice was hypothesized as reason for LF instabilities. To investigate the hypothesis of the orifice-flow induced instability, a modularized single LOX post with an optically accessible orifice module was used for water experiments. The unsteady pressures downstream of the orifice were measured by high-speed piezo sensors at cavitating and non-cavitating intra-injector flow conditions. In addition, cavitating orifice flows were directly visualized by backlight imaging with a high-speed camera through the optically accessible orifice module. The cavitating flow shows two types of flow characteristics: the hydroacoustic peaks induced by cavitation and induced by orifice whistling. The peaks originating from cavitation have complex multiple peak structures in the low frequency region, which can cause lowfrequency chugging instabilities in rocket engines. The peak Strouhal number from cavitation decreases with increasing pressure drop while the Strouhal number from whistling is mostly constant. The non-cavitating flow shows peaks at constant Strouhal number. Also, the second longitudinal mode of the post is excited under these conditions. In conclusion, two types of acoustic peaks from the intra-injector flow of the orifice were identified. The results showed that the intra-injector flow can excite LOXpost eigenfrequencies which can be coupled with the combustion chamber volume leading to combustion instabilities.

elib-URL des Eintrags:https://elib.dlr.de/145962/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Experimental study of intra-injector flow fluctuations induced by a LOX injector orifice driving combustion instability
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Son, MinMin.Son (at) dlr.dehttps://orcid.org/0000-0003-3182-0637NICHT SPEZIFIZIERT
Börner, MichaelMichael.Boerner (at) dlr.dehttps://orcid.org/0000-0002-3441-2869NICHT SPEZIFIZIERT
Hardi, JustinJustin.Hardi (at) dlr.dehttps://orcid.org/0000-0003-3258-5261NICHT SPEZIFIZIERT
Datum:2021
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:akzeptierter Beitrag
Stichwörter:Combustion instability, Flow visualization, Cavitation
Veranstaltungstitel:Symposium on Thermoacoustics in Combustion: Industry meets Academia (SoTiC 2020)
Veranstaltungsort:Virtual
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 September 2021
Veranstaltungsende:17 September 2021
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Wiederverwendbare Raumfahrtsysteme und Antriebstechnologie
Standort: Lampoldshausen
Institute & Einrichtungen:Institut für Raumfahrtantriebe > Raketenantriebstechnologie
Hinterlegt von: Hanke, Michaela
Hinterlegt am:22 Nov 2021 14:03
Letzte Änderung:24 Apr 2024 20:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.