elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Cloud-Native Coastal Turbid Zone Detection Using Multi-Temporal Sentinel-2 Data on Google Earth Engine

Pertiwi, Avi Putri und Lee, Chengfa Benjamin und Traganos, Dimosthenis (2021) Cloud-Native Coastal Turbid Zone Detection Using Multi-Temporal Sentinel-2 Data on Google Earth Engine. Frontiers in Marine Science, 8, Seiten 1-12. Frontiers Media S.A.. doi: 10.3389/fmars.2021.699055. ISSN 2296-7745.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://www.frontiersin.org/article/10.3389/fmars.2021.699055

Kurzfassung

The lack of clarity in turbid coastal waters interferes with light attenuation and hinders remotely sensed studies in aquatic ecology such as benthic habitat mapping and bathymetry estimation. Although turbid water column corrections can be applied on regions with seasonal turbidity by performing multi-temporal analysis, different approaches are needed in regions where the water is constantly turbid or only exhibits subtle turbidity variations through time. This study aims to detect these turbid zones (TZs) in optically shallow coastal waters using multi-temporal Sentinel-2 surface reflectance datasets to improve the aforementioned studies. The herein framework can be paired with other aquatic ecology remote sensing studies to establish the clear water focus area and can also be used by decision makers to identify rehabilitation areas. We selected the coastlines of Guinea-Bissau, Tunisia, and west Madagascar as our case studies which feature wide-ranging turbidity intensities across tropical, subtropical, and Mediterranean waters and applied three different methods for the TZ detection: Otsu's method for bimodal thresholding, linear spectral unmixing, and Random Forest (RF) machine learning method on Google Earth Engine as an end-to-end process. Based on our experiments, the RF method yields good results in all study regions with overall accuracies ranging between 88 and 96% and F1-scores between 0.87 and 0.96. TZ detection is highly site-specific due to the inter-class variability that is mainly affected by the nature of the suspended materials and the environmental characteristics of the site.

elib-URL des Eintrags:https://elib.dlr.de/145865/
Dokumentart:Zeitschriftenbeitrag
Titel:Cloud-Native Coastal Turbid Zone Detection Using Multi-Temporal Sentinel-2 Data on Google Earth Engine
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Pertiwi, Avi Putriavi.pertiwi (at) dlr.dehttps://orcid.org/0000-0002-8819-860XNICHT SPEZIFIZIERT
Lee, Chengfa BenjaminChengfa.Lee (at) dlr.dehttps://orcid.org/0000-0002-2207-5615NICHT SPEZIFIZIERT
Traganos, Dimosthenisdimosthenis.traganos (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:10 September 2021
Erschienen in:Frontiers in Marine Science
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:8
DOI:10.3389/fmars.2021.699055
Seitenbereich:Seiten 1-12
Verlag:Frontiers Media S.A.
ISSN:2296-7745
Status:veröffentlicht
Stichwörter:turbidity, Sentinel-2, multi-temporal data, Google Earth Engine, machine learning, spectral unmixing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Berlin-Adlershof , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Pertiwi, Avi Putri
Hinterlegt am:22 Nov 2021 09:54
Letzte Änderung:29 Nov 2021 11:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.