elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

On solving classes of positive-definite quantum linear systems with quadratically improved runtime in the condition number

Orsucci, Davide und Dunjko, Vedran (2021) On solving classes of positive-definite quantum linear systems with quadratically improved runtime in the condition number. Quantum, 5, Seite 573. Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften. doi: 10.22331/q-2021-11-08-573. ISSN 2521-327X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://quantum-journal.org/papers/q-2021-11-08-573/

Kurzfassung

Quantum algorithms for solving the Quantum Linear System (QLS) problem are among the most investigated quantum algorithms of recent times, with potential applications including the solution of computationally intractable differential equations and speed-ups in machine learning. A fundamental parameter governing the efficiency of QLS solvers is κ, the condition number of the coefficient matrix A, as it has been known since the inception of the QLS problem that for worst-case instances the runtime scales at least linearly in κ [Harrow, Hassidim and Lloyd, PRL 103, 150502 (2009)]. However, for the case of positive-definite matrices classical algorithms can solve linear systems with a runtime scaling as √κ, a quadratic improvement compared to the the indefinite case. It is then natural to ask whether QLS solvers may hold an analogous improvement. In this work we answer the question in the negative, showing that solving a QLS entails a runtime linear in κ also when A is positive definite. We then identify broad classes of positive-definite QLS where this lower bound can be circumvented and present two new quantum algorithms featuring a quadratic speed-up in κ: the first is based on efficiently implementing a matrix-block-encoding of A−1, the second constructs a decomposition of the form A=LL† to precondition the system. These methods are widely applicable and both allow to efficiently solve BQP-complete problems.

elib-URL des Eintrags:https://elib.dlr.de/145449/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:This work was supported by the Dutch Research Council (NWO/OCW), as part of the QuantumSoftware Consortium programme (project number 024.003.037)
Titel:On solving classes of positive-definite quantum linear systems with quadratically improved runtime in the condition number
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Orsucci, DavideDavide.Orsucci (at) dlr.dehttps://orcid.org/0000-0003-3087-8757NICHT SPEZIFIZIERT
Dunjko, VedranUniversity of Leidenhttps://orcid.org/0000-0002-2632-7955NICHT SPEZIFIZIERT
Datum:November 2021
Erschienen in:Quantum
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:5
DOI:10.22331/q-2021-11-08-573
Seitenbereich:Seite 573
Verlag:Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
ISSN:2521-327X
Status:veröffentlicht
Stichwörter:quantum algortihms for linear system solving complexity lower bounds quadratic speed-up
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Quantencomputing, R - Quanteninformation und Kommunikation
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Satellitennetze
Hinterlegt von: Orsucci, Davide
Hinterlegt am:12 Nov 2021 11:17
Letzte Änderung:12 Nov 2021 11:17

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.