elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Global and local community memberships for estimating spreading capability of nodes in social networks

Krukowski, Simon und Hecking, Tobias (2021) Global and local community memberships for estimating spreading capability of nodes in social networks. Applied Network Science, 6 (84). Springer Nature. doi: 10.1007/s41109-021-00421-3. ISSN 2364-8228.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://appliednetsci.springeropen.com/articles/10.1007/s41109-021-00421-3

Kurzfassung

The analysis of spreading processes within complex networks can offer many important insights for the application in contexts such as epidemics, information dissemination or rumours. Particularly, structural factors of the network which either contribute or hinder the spreading are of interest, as they can be used to control or predict such processes. In social networks, the community structure is especially relevant, as actors usually participate in different densely connected social groups which emerge from various contexts, potentially allowing them to inject the spreading process into many different communities quickly. This paper extends our recent findings on the community membership of nodes and how it can be used to predict their individual spreading capability (Krukowski & Hecking, 2020) by further evaluating it on additional networks (both real-world networks and artificially generated networks), while additionally introducing a new local measure to identify influential spreaders that—in contrast to most other measures, does not rely on knowledge of the global network structure. The results confirm our recent findings, showing that the community membership of nodes can be used as a predictor for their spreading capability, while also showing that especially the local measure proves to be a good predictor, effectively outperforming the global measure in many cases. The results are discussed with regard to real-world use cases, where knowledge of the global structure is often not given, yet a prediction regarding the spreading capability highly desired (e.g., contact-tracing apps).

elib-URL des Eintrags:https://elib.dlr.de/145115/
Dokumentart:Zeitschriftenbeitrag
Titel:Global and local community memberships for estimating spreading capability of nodes in social networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Krukowski, Simonsimon.krukowski (at) stud.uni-due.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hecking, TobiasTobias.Hecking (at) dlr.dehttps://orcid.org/0000-0003-0833-7989148019094
Datum:2 November 2021
Erschienen in:Applied Network Science
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:6
DOI:10.1007/s41109-021-00421-3
Verlag:Springer Nature
ISSN:2364-8228
Status:veröffentlicht
Stichwörter:Social Netzwork Analysis, Spreading Processes on Networks, Network Science
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Aufgaben SISTEC
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie
Institut für Softwaretechnologie > Intelligente und verteilte Systeme
Hinterlegt von: Hecking, Dr. Tobias
Hinterlegt am:22 Nov 2021 13:37
Letzte Änderung:04 Dez 2023 12:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.