Steiniger, Yannik und Groen, Johannes und Stoppe, Jannis und Kraus, Dieter und Meisen, Tobias (2021) A study on modern deep learning detection algorithms for automatic target recognition in sidescan sonar images. In: 6th Underwater Acoustics Conference and Exhibition, UACE 2021, 44 (1). Acoustical Society of America. 6th Underwater Acoustics Conference & Exhibition, 2021-06-20 - 2021-06-25, online. doi: 10.1121/2.0001470. ISSN 1939-800X.
PDF
4MB |
Offizielle URL: https://asa.scitation.org/doi/10.1121/2.0001470
Kurzfassung
State-of-the art deep learning models have shown remarkable performance on computer vision tasks like object classification or detection. These networks are typically trained on large-scale datasets of natural RGB images. However, sidescan sonar images are gray-scaled images representing acoustic intensities. The fundamental differences between camera and sonar as well as the images itself makes it necessary to investigate the transfer of results achieved on RGB images to the sonar imagery domain. Therefore, we compare the deep learning detection algorithm YOLOv2 with its updated version YOLOv3, both adopted for object detection in sidescan sonar images. In addition to this, a small convolutional neural network (CNN) is trained from scratch and used for detection. The experiments answer two questions: First, whether, as for general computer vision problems, transfer learning of large deep learning models is preferable over training of custom networks when dealing with limited sonar data. Secondly, whether improvements in the YOLO architecture, developed based on RGB images, lead to significant improvements on sonar data as well. Our results show that YOLOv3 indeed performs better than YOLOv2. Furthermore, YOLOv3 achieves a true positive rate of up to 98.2% and outperforms the small CNN.
elib-URL des Eintrags: | https://elib.dlr.de/144633/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | A study on modern deep learning detection algorithms for automatic target recognition in sidescan sonar images | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 15 Oktober 2021 | ||||||||||||||||||||||||
Erschienen in: | 6th Underwater Acoustics Conference and Exhibition, UACE 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | 44 | ||||||||||||||||||||||||
DOI: | 10.1121/2.0001470 | ||||||||||||||||||||||||
Verlag: | Acoustical Society of America | ||||||||||||||||||||||||
ISSN: | 1939-800X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Sidescan sonar, sonar imagery, object detection, automatic target recognition, deep learning | ||||||||||||||||||||||||
Veranstaltungstitel: | 6th Underwater Acoustics Conference & Exhibition | ||||||||||||||||||||||||
Veranstaltungsort: | online | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 20 Juni 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 25 Juni 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||||||
Standort: | Bremerhaven | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Maritime Sicherheitstechnologien | ||||||||||||||||||||||||
Hinterlegt von: | Steiniger, Yannik | ||||||||||||||||||||||||
Hinterlegt am: | 25 Okt 2021 12:02 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags