elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A spectral mixture analysis and landscape metrics based framework for monitoring spatio-temporal forest cover changes: a case study in Mato Grosso, Brazil

Halbgewachs, Felicitas Magdalena (2021) A spectral mixture analysis and landscape metrics based framework for monitoring spatio-temporal forest cover changes: a case study in Mato Grosso, Brazil. Masterarbeit, Julius-Maximilians-Universität Würzburg.

[img] PDF - Nur DLR-intern zugänglich
78MB

Kurzfassung

More and more Brazilian rainforest is being lost or degraded for various reasons, both anthropogenic and natural, leading to a loss of biodiversity and further global consequences. Especially in the Brazilian state of Mato Grosso, soy production and large cattle farms have led to large losses of rainforest in recent years. To monitor these losses, in this study, Landsat data were used to create classifications for the years 1986 to 2020 based on a spectral mixture analysis followed by a decision tree classification. The classifications were used to determine land cover changes for each year, focusing on cleared and degraded forest areas. In addition, illegally cleared areas were identified using legally issued logging permits. Both legal and illegal areas were intersected with the state cadastral system to provide information on the distribution of logging in each cadastral class. The analyses showed that the forest area in Mato Grosso has decreased by 28.8% since 1986, and that the proportion of illegally cleared areas is significantly higher than that of legal clearcuts, averaging 99.5% in the years analyzed. In order to measure changed forest structures for the selected period, fragmentation analyses based on diverse landscape metrics were carried out for three selected municipalities in Mato Grosso. It was found that forest areas in these municipalities become highly fragmented over the years, with more and more individual small forest fragments emerging, resulting in altered habitats for flora and fauna.

elib-URL des Eintrags:https://elib.dlr.de/144625/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:A spectral mixture analysis and landscape metrics based framework for monitoring spatio-temporal forest cover changes: a case study in Mato Grosso, Brazil
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Halbgewachs, Felicitas MagdalenaMagdalena.Halbgewachs (at) dlr.dehttps://orcid.org/0000-0003-1036-0109NICHT SPEZIFIZIERT
Datum:31 Mai 2021
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:78
Status:veröffentlicht
Stichwörter:Landsat, Google Earth Engine, Spectral Mixture Analysis, deforestation, forest degradation, landscape metrics, forest fragmentation, Mato Grosso
Institution:Julius-Maximilians-Universität Würzburg
Abteilung:Department of Remote Sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Da Ponte, Emmanuel
Hinterlegt am:22 Okt 2021 09:48
Letzte Änderung:29 Mär 2023 00:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.