Wang, Yi und Zorzi, Stefano und Bittner, Ksenia (2021) Machine-learned 3D Building Vectorization from Satellite Imagery. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021, Seiten 1072-1081. IEEE Xplore. CVPR 2021, 2021-06-19 - 2021-06-25, Virtual. doi: 10.1109/CVPRW53098.2021.00118. ISSN 2160-7508.
|
PDF
9MB |
Kurzfassung
We propose a machine learning based approach for automatic 3D building reconstruction and vectorization. Taking a single-channel photogrammetric digital surface model (DSM) and panchromatic (PAN) image as input, we first filter out non-building objects and refine the building shapes of input DSM with a conditional generative adversarial network (cGAN). The refined DSM and the input PAN image are then used through a semantic segmentation network to detect edges and corners of building roofs. Later, a set of vectorization algorithms are proposed to build roof polygons. Finally, the height information from the refined DSM is added to the polygons to obtain a fully vectorized level of detail (LoD)-2 building model. We verify the effectiveness of our method on large-scale satellite images, where we obtain state-of-the-art performance.
| elib-URL des Eintrags: | https://elib.dlr.de/144248/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Machine-learned 3D Building Vectorization from Satellite Imagery | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2021 | ||||||||||||||||
| Erschienen in: | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| DOI: | 10.1109/CVPRW53098.2021.00118 | ||||||||||||||||
| Seitenbereich: | Seiten 1072-1081 | ||||||||||||||||
| Verlag: | IEEE Xplore | ||||||||||||||||
| ISSN: | 2160-7508 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | conditional generative adversarial networks; digital surface model; 3D scene refinement; 3D reconstruction; vectorization; 3D building shape; urban region | ||||||||||||||||
| Veranstaltungstitel: | CVPR 2021 | ||||||||||||||||
| Veranstaltungsort: | Virtual | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 19 Juni 2021 | ||||||||||||||||
| Veranstaltungsende: | 25 Juni 2021 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
| Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||
| Hinterlegt am: | 04 Okt 2021 15:13 | ||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags