elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Disaster Intensity-Based Selection of Training Samples for Remote Sensing Building Damage Classification

Moya, Luis und Geiß, Christian und Hashimoto, Masakazu und Mas, Erick und Koshimura, Shunichi und Strunz, Günter (2021) Disaster Intensity-Based Selection of Training Samples for Remote Sensing Building Damage Classification. IEEE Transactions on Geoscience and Remote Sensing, 59 (10), Seiten 8288-8304. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3046004. ISSN 0196-2892.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9321713

Kurzfassung

Previous applications of machine learning in remote sensing for the identification of damaged buildings in the aftermath of a large-scale disaster have been successful. However, standard methods do not consider the complexity and costs of compiling a training data set after a large-scale disaster. In this article, we study disaster events in which the intensity can be modeled via numerical simulation and/or instrumentation. For such cases, two fully automatic procedures for the detection of severely damaged buildings are introduced. The fundamental assumption is that samples that are located in areas with low disaster intensity mainly represent nondamaged buildings. Furthermore, areas with moderate to strong disaster intensities likely contain damaged and nondamaged buildings. Under this assumption, a procedure that is based on the automatic selection of training samples for learning and calibrating the standard support vector machine classifier is utilized. The second procedure is based on the use of two regularization parameters to define the support vectors. These frameworks avoid the collection of labeled building samples via field surveys and/or visual inspection of optical images, which requires a significant amount of time. The performance of the proposed method is evaluated via application to three real cases: the 2011 Tohoku-Oki earthquake–tsunami, the 2016 Kumamoto earthquake, and the 2018 Okayama floods. The resulted accuracy ranges between 0.85 and 0.89, and thus, it shows that the result can be used for the rapid allocation of affected buildings.

elib-URL des Eintrags:https://elib.dlr.de/144224/
Dokumentart:Zeitschriftenbeitrag
Titel:Disaster Intensity-Based Selection of Training Samples for Remote Sensing Building Damage Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Moya, LuisJapan-Peru Center for Earthquake Engineering Research and Disaster Mitigation (CISMID)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Geiß, ChristianChristian.Geiss (at) dlr.dehttps://orcid.org/0000-0002-7961-8553NICHT SPEZIFIZIERT
Hashimoto, MasakazuInternational Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, JapanNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mas, ErickDisaster Control Research Center, TOHOKU University, Sendai, JapanNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Koshimura, ShunichiInternational Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, JapanNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Strunz, GünterGuenter.Strunz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:14 Januar 2021
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:59
DOI:10.1109/TGRS.2020.3046004
Seitenbereich:Seiten 8288-8304
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Remote Sensing, Building Damage Classification
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Strunz, Dr.-Ing. Günter
Hinterlegt am:04 Okt 2021 13:58
Letzte Änderung:05 Dez 2023 07:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.